首页|考虑消费者网络特征的零售商竞争绩效演化

考虑消费者网络特征的零售商竞争绩效演化

扫码查看
文章探讨了一种包含Q-learning算法的计算实验模型,该模型包含了竞争性多代理零售商-消费者互动网络。在网络模型中,构建包含不同定价与服务水平组合的零售商去争夺不同网络特征(消费者邻居节点、消费者网络重联概率)下的消费者群体。所有零售商代理在Q-learning机制下调整他们的产品价格和服务水平,以使预期销量和利润最大化。基于研究结果发现:(1)增强消费者互动有利于零售商绩效增强;(2)最优组合由不同情景决定。文章的目的是为复杂市场环境下的零售商竞争选择合适的组合策略提供建议。
Evolution of Retailers'Competitive Performance Considering Consumer Network Characteristics
This paper explores a computational experimental model that incorporates a Q-learning algorithm for a network of competing multi-agent retailer-consumer interactions.In the network model,retailers containing different combinations of pricing and service levels are constructed to compete for groups of consumers under different network characteristics(consumer neighbor nodes,consumer network reconnection probability).All retailer agents adjust their product prices and service levels under the Q-learning mechanism to maximize expected sales and profits.Based on our results,we find that:(1)Enhanced consumer interactions are conducive to retailer performance enhancement;(2)The optimal mix is determined by different scenarios.The purpose of this paper is to provide recommendations for retailers competing in complex market environments to select appropriate mix strategies.

retailer competition strategydynamic pricingservice levelQ-learning algorithm

唐崇鑫、李真

展开 >

江苏大学管理学院,江苏镇江 212013

零售商竞争策略 动态定价 服务水平 Q-learning算法

2025

物流科技
全国物流科技情报信息中心 中国仓储协会

物流科技

影响因子:0.489
ISSN:1002-3100
年,卷(期):2025.48(1)