首页|基于改进Q-learning的AGV路径规划研究

基于改进Q-learning的AGV路径规划研究

扫码查看
针对AGV路径规划中的收敛速度慢和路径动态调整的问题,提出了一种改进的Q-learning算法.首先,引入了曼哈顿距离作为额外的启发信息,结合Q-learning算法进行路径规划,以加速算法的收敛速度.其次,增加了故障点的考虑,并在路径规划过程中动态调整路径,验证了算法对于动态环境的可行性.此外,还设计了路径中可以收集货物的机制,使得AGV在执行任务的同时能够完成货物的搬运任务.通过对比实验,验证了改进算法在不同场景下的有效性和性能优势.实验结果表明,改进的Q-learning算法在提高收敛速度、适应复杂环境和灵活执行任务方面取得了显著的效果,为AGV路径规划提供了一种新的解决方案.
Research on AGV Path Planning Based on Improved Q-learning
For addressing the slow convergence and dynamic path adjustment issues in AGV path planning,an enhanced Q-learn-ing algorithm is proposed.Firstly,the Manhattan distance is introduced as additional heuristic information,combined with the Q-learning algorithm for path planning to accelerate the convergence speed of the algorithm.Secondly,the consideration of fault points is added,and the path is dynamically adjusted during the path planning process,validating the algorithm's feasibility for dynamic environments.Additionally,a mechanism for collecting goods along the path is designed,allowing the AGV to perform cargo transportation tasks while executing its main tasks.Through comparative experiments,the effectiveness and performance ad-vantages of the improved algorithm in various scenarios are verified.The experimental results demonstrate significant improvements in convergence speed,adaptation to complex environments,and flexible task execution,providing a novel solution for AGV path planning.

path planningManhattan distancedynamic adjustmentcargo collection

杨子豪、卢益清

展开 >

北京信息科技大学,北京 100192

路径规划 曼哈顿距离 动态调整 货物收集

2025

物流科技
全国物流科技情报信息中心 中国仓储协会

物流科技

影响因子:0.489
ISSN:1002-3100
年,卷(期):2025.48(1)