首页|基于改进YOLOv8的轻量化中小桥梁裂缝检测方法

基于改进YOLOv8的轻量化中小桥梁裂缝检测方法

Lightweight Small-to-Medium Bridge Crack Detection Method Based on Improved YOLOv8

扫码查看
近年来,中国桥梁建设空前发展,桥梁安全运维问题日益凸显.文章提出一种基于YOLOv8的裂缝检测模型YOLOv8-BC,该模型采用GhostConv对HGNetv2改进后的结构替换YOLOv8的主干网络,实现模型轻量化;引入可变形注意力机制DAttention,获得更多的空间信息;使用基于辅助边框的Inner-iou损失函数替代CIOU损失函数,提高模型的泛化能力和检测精度.在自建数据集上进行实验,结果表明YOLOv8-BC模型准确率达到了 95.3%,mAP50达到了95.9%,相较于YOLOv8s模型分别提高了 2.3%和2.0%,同时参数量降低了 15.3%.这表明YOLOv8-BC模型能够更高效地检测复杂环境下的桥梁裂缝,为工业检测提供了重要思路和技术支持.
In recent years,the bridge construction in China has developed unprecedentedly,and the problem of bridge safety operation and maintenance has become more and more prominent.In this paper,we propose a crack detection model YOLOv8-BC based on YOLOv8,which adopts GhostConv's improved structure of HGNetv2 to replace the backbone net-work of YOLOv8,to realize the model's lightweight;introduces the deformable attention mechanism DAttention,to obtain more spatial information;and uses the auxiliary edge-based inner-iou loss function based on auxiliary edges instead of CIOU loss function to improve the generalization ability and detec-tion accuracy of the model.Experiments on the self-con-structed dataset show that the YOLOv8-BC model achieves an accuracy of 95.3%and the mAP50 reaches 95.9%,which is improved by 2.3%and 2.0%,respectively,compared with the YOLOv8s model,while the number of parameters is reduced by 15.3%.This indicates that the YOLOv8-BC model can detect bridge cracks in complex environments more efficiently,which provides important ideas and technical support for in-dustrial inspection.

bridge crackobject detectionattention mecha-nismYOLOv8image processing

赵利君

展开 >

太原师范学院计算机科学与技术学院,山西晋中 030619

桥梁裂缝 目标检测 注意力机制 YOLOv8 图像处理

2025

物流科技
全国物流科技情报信息中心 中国仓储协会

物流科技

影响因子:0.489
ISSN:1002-3100
年,卷(期):2025.48(1)