首页|基于改进YOLOv8的轻量化中小桥梁裂缝检测方法

基于改进YOLOv8的轻量化中小桥梁裂缝检测方法

扫码查看
近年来,中国桥梁建设空前发展,桥梁安全运维问题日益凸显.文章提出一种基于YOLOv8的裂缝检测模型YOLOv8-BC,该模型采用GhostConv对HGNetv2改进后的结构替换YOLOv8的主干网络,实现模型轻量化;引入可变形注意力机制DAttention,获得更多的空间信息;使用基于辅助边框的Inner-iou损失函数替代CIOU损失函数,提高模型的泛化能力和检测精度.在自建数据集上进行实验,结果表明YOLOv8-BC模型准确率达到了 95.3%,mAP50达到了95.9%,相较于YOLOv8s模型分别提高了 2.3%和2.0%,同时参数量降低了 15.3%.这表明YOLOv8-BC模型能够更高效地检测复杂环境下的桥梁裂缝,为工业检测提供了重要思路和技术支持.
Lightweight Small-to-Medium Bridge Crack Detection Method Based on Improved YOLOv8
In recent years,the bridge construction in China has developed unprecedentedly,and the problem of bridge safety operation and maintenance has become more and more prominent.In this paper,we propose a crack detection model YOLOv8-BC based on YOLOv8,which adopts GhostConv's improved structure of HGNetv2 to replace the backbone net-work of YOLOv8,to realize the model's lightweight;introduces the deformable attention mechanism DAttention,to obtain more spatial information;and uses the auxiliary edge-based inner-iou loss function based on auxiliary edges instead of CIOU loss function to improve the generalization ability and detec-tion accuracy of the model.Experiments on the self-con-structed dataset show that the YOLOv8-BC model achieves an accuracy of 95.3%and the mAP50 reaches 95.9%,which is improved by 2.3%and 2.0%,respectively,compared with the YOLOv8s model,while the number of parameters is reduced by 15.3%.This indicates that the YOLOv8-BC model can detect bridge cracks in complex environments more efficiently,which provides important ideas and technical support for in-dustrial inspection.

bridge crackobject detectionattention mecha-nismYOLOv8image processing

赵利君

展开 >

太原师范学院计算机科学与技术学院,山西晋中 030619

桥梁裂缝 目标检测 注意力机制 YOLOv8 图像处理

2025

物流科技
全国物流科技情报信息中心 中国仓储协会

物流科技

影响因子:0.489
ISSN:1002-3100
年,卷(期):2025.48(1)