首页|基于改进人工蜂群算法的冷链物流配送路径优化

基于改进人工蜂群算法的冷链物流配送路径优化

扫码查看
在冷链配送过程中,不同货物的温控需求是不同的.如何将具有不同温控需求的货物高效、低成本送达客户手中是冷链物流企业需要解决的重要问题之一.考虑到实际生活中居民对于不同温层货物的需求,引入多温共配模式,在车辆载重的约束下,构建以车辆固定成本、运输成本、货损成本、制冷成本、时间惩罚成本之和最小的冷链物流配送路径模型.针对传统人工蜂群算法收敛慢、容易早熟的问题,在跟随蜂阶段采用精英保留策略,加快算法收敛速度,在侦查蜂阶段结合遗传算法的变异操作,避免算法过早陷入局部最优,设计了一种改进的人工蜂群算法.最后通过对实例的仿真实验,验证改进后的人工蜂群算法能求解出更优的路径,可以有效地降低冷链物流配送成本.
Optimization of Cold Chain Logistics Distribution Path Based on Improved Artificial Bee Colony Algorithm
In the process of cold chain distribution,the tem-perature control needs of different goods are different.How to efficiently and low-cost deliver goods with different tempera-ture control needs to customers is one of the important prob-lems that cold chain logistics enterprises need to solve.Con-sidering the demand of residents for goods at different temper-ature levels in practical life,a multi temperature co distribu-tion model is introduced.Under the constraint of vehicle load,a cold chain logistics distribution path model is constructed with the minimum sum of vehicle fixed cost,transportation cost,cargo damage cost,refrigeration cost,and time penalty cost.In response to the problems of slow convergence and premature convergence in traditional artificial bee colony algo-rithms,an elite retention strategy is adopted in the following bee stage to accelerate the convergence speed of the algo-rithm.In the reconnaissance bee stage,genetic algorithm mu-tation operation is combined to avoid the algorithm from falling into local optima too early.An improved artificial bee colony algorithm is designed.Finally,through simulation ex-periments on the example,it was verified that the improved artificial bee colony algorithm can solve for better paths and effectively reduce the cost of cold chain logistics distribution.

cold chain logisticspath optimizationartificial bee colony

许志豪、刘慧勇、方德英

展开 >

北京信息科技大学,北京 100192

冷链物流 路径优化 人工蜂群算法

2025

物流科技
全国物流科技情报信息中心 中国仓储协会

物流科技

影响因子:0.489
ISSN:1002-3100
年,卷(期):2025.48(1)