首页|基于人工神经网络的大地电磁时序分类研究

基于人工神经网络的大地电磁时序分类研究

扫码查看
随着社会的发展,各类干扰日益加剧,高质量的大地电磁采集也变得愈加困难.为了提高数据质量,学者们针对不同类型的噪声提出了很多对应的去噪方法,由于大地电磁数据量都比较大,去噪前不可能对每条数据进行人工判读,急需一种高效率的噪声识别和分类方法.基于此,本文将人工神经网络应用于大地电磁时间序列分类中,为了选取最为合适的大地电磁时间序列分类网络模型,使用模拟方波、工频、脉冲噪声以及实测无噪声数据 4类时间序列类型,分别对LSTM、FCN、ResNet、LSTM-FCN及LSTM-ResNet模型进行了噪声分类训练和实测数据分类对比试验.结果表明,FCN及LSTM-FCN在大地电磁时序分类中具有相对较好的效果.其中,FCN模型对实测数据分类准确率最高可达 99.84%,每个epoch平均用时 9.6 s,LSTM-FCN较FCN具有更高的分类精度,实测数据集最高分类准确率近乎100%,但是其每个epoch平均用时24.6 s,且较FCN也更易过拟合.总体来看,如果数据量较少使用LSTM-FCN可以获取更高的分类精度,数据量较大时需考虑时间成本,使用FCN则更为合适.最后,利用LSTM-FCN分类模型和LSTM去噪模型搭建了大地电磁噪声处理系统,对含有不同类型噪声的大地电磁数据进行了成功处理.
Research on magnetotelluric time series classification based on artificial neural network
With the development of society,high-quality magnetotelluric signal acquisition is becoming more and more difficult because of various types of human interference are increasingly intensified.Scholars have proposed many corresponding denoising methods for different types of noise to improve data quality.It is impossible to manually interpret each data before denoising due to the huge amount of data.So an efficient noise recognition and classification method is urgently needed.Based on this,artificial neural network is ap-plied in the classification of magnetotelluric time series in this paper.Four types of time series,namely,simulated square wave,power frequency,impulse noise,and measured noiseless data,were used to conduct noise classification training and measured data classifica-tion on LSTM、FCN、ResNet、LSTM-FCN and LSTM-ResNet models.The results show that FCN and LSTM-FCN has a relatively good effect on the classification of magnetotelluric time series.Among them,the highest classification accuracy of FCN measured data can reach 99.84%,and the average time for each epoch is 9.6 s.LSTM-FCN has higher classification accuracy than FCN,the highest clas-sification accuracy of measured data sets is nearly 100%,but the average time for each epoch is 24.6 s,and it is easier to overfit than FCN.Overall,LSTM-FCN can achieve higher classification accuracy when the amount of data is relatively small,if the amount of data is large,it is necessary to consider the time cost,using FCN is more appropriate.Finally,the magnetotelluric data containing different types of noise was successfully processed using the magnetotelluric noise processing system which constructed by the LSTM-FCN classi-fication model and the LSTM denoising model.

magnetotelluricstime series classificationartificial neural networkdeep learningnoise

杨凯、刘诚、贺景龙、李含、姚川

展开 >

中国地质调查局 西安矿产资源调查中心,陕西 西安 710100

中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074

大地电磁 时间序列分类 人工神经网络 深度学习 噪声

陕西省科学计划

2023-JC-QN-0365

2024

物探与化探
中国国土资源航空物探遥感中心

物探与化探

CSTPCD
影响因子:0.828
ISSN:1000-8918
年,卷(期):2024.48(2)
  • 25