Exploring the shear-wave prediction method for complex lithologic assemblages of the Fengcheng Formation in the Mahu sag
Research on shear-wave prediction for complex lithologic assemblages of the Permian Fengcheng Formation in the Mahu sag is critical but challenging for accurately identifying hydrocarbon accumulation zones in the sag.The key to the prediction is to make breakthroughs in petrophysical modeling based on different lithologies.Given various lithologic types and intricate mineral compositions,this study delved into petrophysical modeling based on different lithologies.Consequently,this study developed an interval-,lithology-,and model-specific shear-wave prediction technique for complex lithologies.Furthermore,it established a technique for building a dry rock matrix for alkali lake-type dolomitized tight reservoirs by highlighting the major rock mineral compositions and merging the same types of rock mineral compositions.Additionally,the self-consistent model was selected for shear-wave calculation in the petrophysical modeling of dolomitized sandstone reservoirs.These techniques have been applied in the Fengcheng Formation of the Mahu Sag,achie-ving encouraging application results in both the shear-wave prediction of complex lithologic assemblages and the prediction of sweet spots.This study will provide a basis for well deployment and reserves determination in the area and offer valuable experience for oil and gas exploration in similar areas.
petrophysical modelingshear-wave predictionalkali lake typetight reservoircomplex mineralMahu sag