首页|基于生成对抗网络的半航空瞬变电磁噪声数据扩充方法

基于生成对抗网络的半航空瞬变电磁噪声数据扩充方法

扫码查看
半航空瞬变电磁噪声数据形式复杂,获取成本高、数据量稀缺,难以通过传统的扩充方法进行数据扩充,极大地影响了后续降噪工作的开展.针对这个问题,本研究提出了基于生成对抗网络的半航空瞬变电磁信号数据扩充方法,通过将生成器设计为LSTM网络,基于实采噪声数据集,进行生成器与判别器模型的训练,成功获取了可以生成仿真噪声数据的生成器模型,之后分析了生成器生成的仿真噪声与实采噪声的分布,并且对比了扩充前后降噪网络的表现,验证了本方法对于半航空瞬变电磁实采噪声数据的扩充是真实有效的.
A data augmentation method for semi-airborne transient electromagnetic noise based on a generative adversarial network
The semi-airborne transient electromagnetic(SATEM)noise data,exhibiting intricate forms,high acquisition costs,and small volumes,cannot be augmented using conventional augmentation methods,thus significantly hindering the subsequent denoising work.Hence,this study proposed a data augmentation method for SATEM signals based on the generative adversarial network(GAN).By designing the generator as a long short-term memory(LSTM)network and training the generator and discriminator models based on the dataset of real-measured SATEM noise,this study obtained a generator model that can generate simulated noise data.Then,this study analyzed the distributions of the simulated noise generated by the generator and the real-measured noise.Moreover,this study compared the performance of the denoising network before and after augmentation,demonstrating the effectiveness of this method for augmenting real-measured SATEM noise data.

semi-airborne transient electromagneticsgenerative adversarial networkreal-measured noisedata augmentation

冯威、冯浩、肖立江、陈品明、刘东、王用鑫、周小生、孙怀凤、王震

展开 >

浙江交工集团股份有限公司,浙江 杭州 310000

山东大学 岩土工程中心,山东 济南 250061

广西交通 投资交通有限公司,广西 南宁 530022

山东省交通规划设计院集团有限公司,山东 济南 250101

山东大学 北京研究院,北京 100873

展开 >

半航空瞬变电磁 生成对抗网络 实采噪声 数据扩充

广西壮族自治区重点研发计划国家自然科学基金面上项目

桂科AB2208001042074145

2024

物探与化探
中国国土资源航空物探遥感中心

物探与化探

CSTPCD
影响因子:0.828
ISSN:1000-8918
年,卷(期):2024.48(3)
  • 9