A fault extraction technique based on structure-oriented filtering and its application
Accurately identifying faults is crucial for the exploration and exploitation of oil and gas fields,and further fault extraction based on this holds critical significance for later comprehensive research.At present,the commonly used fault extraction techniques pri-marily include automatic fault tracking,fault slice interpretation,and manual interpretation.However,these fault extraction techniques and their application in practical exploration and exploitation often face the following challenges.Automatic fault tracking based on an attribute volume often extracts faults with low accuracy and poor continuity,whereas fault slice interpretation and conventional manual interpretation require long work cycles.Hence,this study proposed a fault extraction technique based on structure-oriented filtering.First,the original poststack seismic data were processed through structure-oriented filtering to improve the quality of fundamental data and enhance the fault boundary features.Then,a relative isochronous model was established based on the filtered data volume,with sen-sitive attributes that can characterize faults extracted.Finally,based on the analysis of fault combination relationships,a comprehensive interpretation method combining plane and profile views was employed to extract faults.The technique proposed in this study has been successfully applied to a certain block of SB.As indicated by the application results,the proposed technique exhibits higher reliability,accuracy,and efficiency compared to the three commonly used fault extraction techniques,thus demonstrating high applicability.