首页|基于文本深度聚类的意见领袖识别模型研究

基于文本深度聚类的意见领袖识别模型研究

扫码查看
网络舆情事件所引发的犯罪呈高发态势,而传统意见领袖识别方法通常基于用户信息、转发、评论数等元数据,忽略了网络结构和文本内容等关键信息,缺乏意见领袖观点,容易导致结果偏差.针对上述问题,提出结合语义聚类的意见领袖识别模型,通过BERT-LDA&DEC算法对用户文本进行聚类,根据不同子话题对意见领袖进行分组,提取关键词,通过将分组后的用户从网络拓扑、个人属性、活跃度三个方面建立指标体系,使用熵权灰色关联法对用户指标进行评价,最后结合聚类关键词进行综合分析.实验证明,该方法可以有效识别微博话题中不同子话题中的意见领袖及其观点.
Research on Opinion Leader Identification Model Based on Text Deep Clustering
The crime caused by online public opinion events is on the rise.However,traditional opinion leader identification methods are usually based on metadata such as user information,forwarding,and comment count,ignoring key information such as network structure and text content,and lacking opinion leader opinions,which can easily lead to biased results.To address the above issues,a semantic clustering-based opinion leader recognition model is proposed.This model can cluster user texts by the BERT-LDA&DEC algorithms,group opinion leaders according to different sub topics,and extract keywords.An indicator system for grouped users is established from three aspects:network topology,personal attributes,and activity level.The entropy weight gray correlation method is used to evaluate user indicators.Finally,a comprehensive analysis is conducted based on clustering keywords.Experiments have shown that this method can effectively identify opinion leaders and their viewpoints in different subtopics of microblog topics.

Deep Embedded Clustering(DEC)opinion leadersentropy weight grey correlation methodBERT-LDA

王世航、汤艳君、薛秋爽

展开 >

中国刑事警察学院 公安信息技术与情报学院,辽宁 沈阳 110854

DEC深度嵌入聚类 意见领袖 熵权灰色关联法 BERT-LDA

中国刑事警察学院研究生创新能力提升项目

2022YCYB46

2024

中国人民警察大学学报
中国人民武装警察部队学院

中国人民警察大学学报

影响因子:0.378
ISSN:2097-0900
年,卷(期):2024.40(4)
  • 11