首页|基于18F-FDG PET的随机森林模型预测早期浸润性肺腺癌的病理参数

基于18F-FDG PET的随机森林模型预测早期浸润性肺腺癌的病理参数

扫码查看
目的:探讨基于18F-FDG PET随机森林(RF)模型及临床参数在预测早期浸润性肺腺癌病理参数的价值.方法:回顾性分析2020年8月至2022年7月温州医科大学附属第一医院收治的295例早期浸润性肺腺癌患者的临床、病理和影像学资料,包括病理征阳性158例,阴性137例.按7∶3比例将患者随机分为训练集(207例)与测试集(88例).从肿瘤及肿瘤周围5 mm区域中提取基于PET的组学特征,分为肿瘤组及瘤周组,通过RF算法建立模型并验证,采用ROC曲线的AUC、特异度、灵敏度及准确度评价模型的诊断性能.结果:运用多因素Logistic回归逐步向后的方法筛选出SUVmax在病理阳性组和病理阴性组间差异有统计学意义(P<0.05),其构成的临床组模型在训练集及测试集的AUC分别是0.72、0.71.肿瘤组及瘤周组模型在训练集AUC分别为0.81、0.79,测试集中AUC分别为0.82、0.79.肿瘤+瘤周组通过LASSO回归筛选得到9个显著相关的特征,基于上述特征建立了 4种机器学习模型,包括决策数(DT)、支持向量机(SVM)、RF、k近邻(kNN),其中RF(AUC=0.91、0.88)模型在训练集和验证集中均优于DT(AUC=0.73、0.76)、SVM(AUC=0.69、0.86)、kNN(AUC=0.80、0.81)模型,因此选择RF模型作为最佳影像组学模型.与肿瘤组及瘤周组影像组学模型相比,肿瘤+瘤周组构建的综合RF模型在训练集、验证集的AUC值分别为0.91、0.88,与肿瘤组、瘤周组、临床组模型差异均有统计学意义(P<0.05),具有良好且稳定的预测效能.结论:基于18F-FDG PET肿瘤及瘤周的机器学习模型在预测早期浸润性肺腺癌临床病理参数表现良好,可为早期肺腺癌患者术前个体化精准诊疗方案的制定提供重要信息.
Development and validation of a random forest model based on 18F-FDG PET for predicting pathological parameters of early invasive lung adenocarcinoma
Objective:To evaluate the value of positron emission tomography(PET)-based random forest model for predicting pathological parameters in patients with clinical stage IA non-small cell lung cancer.Methods:Clinical,pathological and imaging data of totally 295 lung cancer patients who underwent the preoperative fluorine-18-fludeoxyglucose(18F-FDG)from August 2020 to July 2022 at the First Affiliated Hospital of Wenzhou Medical University were retrospectively analyzed,including 158 cases of positive pathological signs and 137 cases of negative pathological signs.Patients were randomly divided as a training cohort(207 cases)and a validation cohort(88 cases)in a 7:3 ratio.PET-based radiomics features were extracted from the gross tumor volume and gross tumor volume incorporating peritumoral 5 mm regions.The model established and validated by using random forest algorithm.The AUC,sensitivity,specificity and accuracy were used to evaluate the diagnostic performance of the model.Results:Logistic regression analysis showed that the SUVmax value had statistical difference between the pathology-positive group and the pathology-negative group in the training set(both P<0.05),with the AUC of the clinical model based on this being 0.72 in the training set and 0.71 in the validation set.The models for the tumor group and the peritumoral group achieved AUCs of 0.81 and 0.79 on the training set,and 0.82 and 0.79 on the test set,respectively.The tumor group and peritumoral group were selected through LASSO regression to obtain 9 significantly correlated features.Based on these features,four machine learning models were established,including decision number(DT),support vector machine(SVM),random forest(RF),and k-nearest neighbor(kNN).The model established by RF(AUC=0.91,0.88)outperformed DT(AUC=0.73,0.76),SVM(AUC=0.69,0.86),and kNN(AUC=0.80,0.81)models in both training and validation sets.Therefore,the RF model was chosen as the optimal imaging omics model.Compared with gross tumor model and gross tumor volume incorporating peritumoral 5 mm region,the comprehensive model contained tumor and peritumoral factor showed promising performance with AUC of 0.91 in the training cohort and 0.88 in the validation cohort respectively.The differences between the tumor group,peritumoral group,and clinical group models were statistically significant(P<0.05).Conclusion:The predicative model based on machine learning can provide a novel tool for predicting pathological parameters of lung adenocarcinoma patients,which contributes to the precise diagnosis and preoperative treatment in clinical decision-making.

adenocarcinoma of lungperitumormachine learningpathologypositron emission computed tomography

薛蓓慧、谢佳庚、蓝骏平、郑祥武、王玲、唐坤

展开 >

温州医科大学附属第一医院放射科,浙江 温州 325015

温州医科大学附属第一医院核医学科,浙江 温州 325015

肺腺癌 瘤周 机器学习 病理 正电子发射型计算机断层显像

2025

温州医科大学学报
温州医学院

温州医科大学学报

影响因子:0.762
ISSN:2095-9400
年,卷(期):2025.55(1)