Solving Fractional Volterra-Fredholm Integro-differential Equations with Laguerre Polynomials
In order to find approximate solutions to fractional integro-differential equations,an approximate method for solving fractional Volterra-Fredholm integro-differential equations based on Laguerre polynomials is proposed.Firstly,in the sense of Caputo fractional derivatives,the fractional integro-differential equations are converted into matrix form on Laguerre polynomial space.Then,the matrix equations are obtained by using the collocation points for solution.Finally,the effectiveness and accuracy of this method are verified through numerical examples.This method is simpler and more accurate than the Bernoulli wavelet method.