首页|Laguerre多项式求解分数阶Volterra-Fredholm积分-微分方程

Laguerre多项式求解分数阶Volterra-Fredholm积分-微分方程

扫码查看
为求分数阶积分-微分方程的近似解,提出了一种基于Laguerre多项式求解分数阶Volterra-Fredholm积分-微分方程的近似方法.首先,在Caputo分数阶导数意义下,将分数阶积分-微分方程转化为Laguerre多项式空间上的矩阵形式.然后,利用配置点得到矩阵方程组来进行求解.最后,通过数值算例验证了该方法的有效性和准确性.该方法与Bernoulli小波法相比更简单精确.
Solving Fractional Volterra-Fredholm Integro-differential Equations with Laguerre Polynomials
In order to find approximate solutions to fractional integro-differential equations,an approximate method for solving fractional Volterra-Fredholm integro-differential equations based on Laguerre polynomials is proposed.Firstly,in the sense of Caputo fractional derivatives,the fractional integro-differential equations are converted into matrix form on Laguerre polynomial space.Then,the matrix equations are obtained by using the collocation points for solution.Finally,the effectiveness and accuracy of this method are verified through numerical examples.This method is simpler and more accurate than the Bernoulli wavelet method.

Laguerre polynomialsCaputo fractional derivativesfractional Volterra-Fredholm integro-differential equationmatrix equation

李晓洁、陈豫眉

展开 >

西华师范大学数学与信息学院,四川南充 637009

西华师范大学公共数学学院,四川南充 637009

Laguerre多项式 Caputo分数阶导数 分数阶Volterra-Fredholm积分-微分方程 矩阵方程

2024

西安文理学院学报(自然科学版)
西安文理学院

西安文理学院学报(自然科学版)

影响因子:0.209
ISSN:1008-5564
年,卷(期):2024.27(3)