首页|考虑协变量影响混合概率的一阶整数值自回归模型

考虑协变量影响混合概率的一阶整数值自回归模型

扫码查看
选取合适的计数数据统计方法,能够利于解决大数据时代的数据分析和预测问题.研究利用Logistic结构,融合考虑协变量影响混合概率的一阶整数值自回归模型,结合了条件极大似然估计模型中的未知参数.研究结果表明,当样本容量增大时,模型参数估计的偏差、标准差、均方误差都减小了,说明了模型估计量具有相合性.在参数组合为(0.6,0.5,1)且样本量为800的条件下,模型A展现出低偏差、低标准差和低均方误差,且条件极大似然估计量符合正态分布趋势.比较一般一阶整数值自回归模型时,基于赤池信息准则和贝叶斯信息准则的结果表明,研究模型具有更好的拟合效果,更有助于计算数据的预测和分析.
A First-order Integer Autoregressive Model Considering the Influence of Covariates on Mixed Probabilities
Selecting appropriate counting data statistical methods can help solve data analysis and prediction problems in the era of big data.The study utilizes a logistic structure to integrate a First-Order integer-valued autoregressive model that considers the influence of covariates on mixing probability,and combines the unknown parameters in the conditional maximum likelihood estimation model.The research results show that as the sample size increases,the bias,standard deviation,and mean square error of the model parameter estimation decrease,indicating that the model estimators are consistent.Under the condition of parameter combination of(0.6,0.5,1)and sample size of 800,Model A exhibits low bias,low standard deviation,and low mean square error,and the conditional maximum likelihood estimator follows a normal distribution trend.When comparing First-Order integer autoregressive models,the results based on the Chichi information criterion and Bayesian information criterion indicate that the research model has better fitting performance and is more helpful for for the prediction and analysis of computational data.

first-order integer autoregressionlogistic structurecovariancemixed probabilityconditional maximum likelihood estimationparameter estimation

温雪俊

展开 >

山西电子科技学院,山西临汾 041000

一阶整数值自回归 Logistic结构 协变量 混合概率 条件极大似然估计 参数估计

2024

西安文理学院学报(自然科学版)
西安文理学院

西安文理学院学报(自然科学版)

影响因子:0.209
ISSN:1008-5564
年,卷(期):2024.27(3)