首页|基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法

基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法

扫码查看
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求.为此,提出一种基于SAE 和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测.并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析.结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE 仅为0.081,平均绝对百分比误差MAPE为 1.189,决定系数R2 为0.966,其RMSE 和MAPE 最小,R2 最大,较其他模型预测精度更高.该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题.
Drillability Prediction Method for Deep Undrilled Formation Based on SAE and LSTM Neural Network
It is very necessary to predict the drillability of the formation before drilling when formulating the scheme of drilling speed increase in deep formation.The existing rock drillability prediction models have low accuracy and are difficult to meet the requirements of drilling technology.Therefore,a combined model based on SAE and LSTMneural networks is proposed to predict the drillability of deep undrilled formations.The training time and prediction results of SAE-LSTMcombined model are compared with those of BP neural network,support vector machine,random forest and single LSTMmodels.The results show that the SAE-LSTMcombined model has the shortest training time and the smallest error between the predicted value and the actual measured value.The root mean square error RMSE of fitting result is only 0.081,the average absolute percentage error MAPE is 1.189,and the determination coefficient R2is 0.966,with the smallest RMSE and MAPE and the largest R2.The SAE-LSTMcombined model has higher prediction accuracy than oth-er models.This method brings a new way to the prediction of formation parameters,and can improve the problems of low prediction effi-ciency and low prediction accuracy of the previous prediction methods in dealing with complex formations.

deep formation drillingrock drillabilityprediction modelstacked autoencoderLSTM neural networkdeep learning

朱亮、李晓明、纪慧、楼一珊

展开 >

油气钻完井技术国家工程研究中心(长江大学),湖北 武汉 430100

油气钻采工程湖北省重点实验室(长江大学),湖北 武汉 430100

中国石油 川庆钻探工程有限公司,四川 成都 610051

深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 LSTM神经网络 深度学习

2025

西安石油大学学报(自然科学版)
西安石油大学

西安石油大学学报(自然科学版)

北大核心
影响因子:0.788
ISSN:1673-064X
年,卷(期):2025.40(1)