首页|基于混合双线性模型的抑郁症辅助诊断

基于混合双线性模型的抑郁症辅助诊断

扫码查看
抑郁症作为常见的慢性精神障碍疾病,其致病原因复杂且康复率较低.基于头皮脑电图提出一种使用混合双线性深度学习网络完成抑郁症辅助诊断的方法.首先,将卷积神经网络提取得到的空间特征和卷积长短时记忆网络提取得到的时空特征通过双线性方法融合成二阶混合特征,构建时空特征混合双线性模型;然后,使用脑电信号各频段的功能连接矩阵进行训练,并用不同的功能连接度量方法分析脑电信号各频段与抑郁症功能连接之间的关系;最后,在MODMA公开数据集上应用此方法.实验结果表明,使用二阶混合特征的混合双线性模型在Beta频段相关性功能连接矩阵上取得99.38%的准确率,说明了 Beta频段相关性功能连接矩阵的二阶混合特征在抑郁症辅助诊断中的有效性,与其他方法相比,所提方法达到了较高的准确率,具有较好的应用前景.
Assisted diagnosis of depression based on hybrid bilinear model
Depression,as a common chronic mental disorder,has complex causes and low recovery rates.A method for assisting the diagnosis of depression using a hybrid bilinear deep learning network based on scalp e-lectroencephalography is proposed.Firstly,the spatial features extracted by the convolutional neural network and the spatiotemporal features extracted by the convolutional long short-term memory network are fused into second-order hybrid features through bilinear methods to construct a hybrid bilinear model.Then,the func-tional connectivity matrices of each frequency band of EEG signals are used to train the model,and different functional connectivity measurement methods are used to analyze the relationship between the functional con-nectivity of each frequency band of EEG signals and depression.Finally,this method is applied on the MOD-MA dataset.The experimental results showed that the hybrid bilinear model using second-order hybrid features achieved an accuracy of 99.38%on the Beta frequency band correlation functional connectivity matrix,which indicates the effectiveness of the second-order hybrid features of the Beta frequency band correlation functional connectivity matrix in the auxiliary diagnosis of depression.Compared with other methods,the proposed meth-od achieves higher accuracy and has high application prospects.

depressionfunctional connectionconvolutional long-short term memorybilinearsecond-order

贾建、孙新娜、张瑞

展开 >

西北大学数学学院,陕西西安 710127

西北大学医学大数据研究中心,陕西西安 710127

抑郁症 功能连接 卷积长短时记忆网络 双线性 二阶特征

国家自然科学基金面上项目国家自然科学基金青年基金陕西省重点研发计划陕西数理基础科学研究项目

12071369620061892019ZDLSF02-09-0222JSZ008

2024

西北大学学报(自然科学版)
西北大学

西北大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-274X
年,卷(期):2024.54(2)
  • 38