首页|基于多尺度偏移感知网络的结肠息肉目标检测

基于多尺度偏移感知网络的结肠息肉目标检测

扫码查看
一些息肉目标检测方法难以充分提取全局及长距离语义信息,导致在具有环境噪声的情况下对尺寸差异较大的息肉目标检测精度低。为了解决该问题,提出了一种基于多尺度偏移感知的息肉检测网络。首先,设计了多尺度偏移感知注意力模块,通过在不同尺度上对图像特征进行注意力加权和偏移感知,提高了图像特征的提取和融合能力。其次,设计了渐近特征融合模块,对不同尺度的特征图进行自适应空间加权融合,从而捕捉了更丰富的上下文信息。通过大量实验证明,该方法在三个不同类型的息肉数据集上分别达到了 94。8%、94。6%和95。8%的检测精度,相比于当前主流的目标检测方法取得了更好的检测结果。
Multi-scale offset-aware network for colon polyp detection
Some polyp detection methods struggle to adequately extract global and long-range semantic information,leading to lower detection accuracy of polyp targets with significant size variations in the presence of environmental noise.In order to address this issue,a polyp detection network based on multi-scale offset awareness is proposed.Firstly,a multi-scale offset-aware attention module is designed to enhance the extraction and fusion capability of image features by applying attention weighting and offset awareness to features at different scales.Secondly,an asymptotic feature fusion module is designed to adaptively spatially weight and fuse feature maps of different scales,thereby capturing richer contextual informa-tion.Extensive experiments demonstrate that this method achieves detection accuracies of 94.8%,94.6%,and 95.8%on three different polyp datasets,outperforming current main-stream object detection methods.

medical imagingpolyp detectionattention mechanismmulti-scale featurefea-ture fusion

池晓鑫、杜晓刚、王营博、雷涛

展开 >

陕西科技大学电子信息与人工智能学院陕西省人工智能联合实验室,陕西西安 710021

医学图像 息肉检测 注意力机制 多尺度特征 特征融合

2025

陕西科技大学学报
陕西科技大学

陕西科技大学学报

北大核心
影响因子:0.418
ISSN:2096-398X
年,卷(期):2025.43(1)