首页|基于CNN和Transformer交叉教学的半监督医学图像分割

基于CNN和Transformer交叉教学的半监督医学图像分割

扫码查看
由于医学图像分割领域缺乏高质量的标注数据,半监督学习方法在医学图像语义分割任务中受到高度重视。为了充分利用卷积神经网络(Convolutional Neural Network,CNN)和Transformer在半监督学习中的优势,本文提出一种基于CNN与Transformer交叉教学的半监督医学图像分割方法。该方法将经典的深度协同训练从一致性正则化简化为交叉教学,利用循环伪标签方案使两个网络的预测差异转换为无监督损失,以鼓励两个网络具有一致的低熵预测。所提方法在ISIC 2018数据集上进行实验,在采用20%的标注比例时,Dice系数和Jac-card系数分别达到87。25%和79。17%,相比于监督U-Net++的训练结果分别提升了 2。89%和3。53%,并且优于目前主流的半监督学习方法,验证了所提方法在半监督医学图像分割上的有效性和泛化性。
Semi-supervised medical image segmentation based on cross-teaching between CNN and Transformer
Due to the lack of high-quality annotations in the medical imaging field,semi-super-vised learning methods have gained significant attention for image semantic segmentation tasks.This paper proposes a method that leverages both Convolutional Neural Network(CNN)and Transformer through cross-teaching.The method simplifies the classical deep co-training by replacing consistency regularization with cross-teaching.It utilizes a cyclic pseu-do-labeling scheme,converting prediction differences into unsupervised losses.This encoura-ges consistent low-entropy predictions from both networks.The proposed method is experi-mentally validated on the ISIC 2018 dataset,achieving Dice coefficients of 87.25%and Jac-card coefficients of 79.17%with a 20%annotation ratio.Compared to the supervised U-Net++training results,there is an improvement of 2.89%and 3.53%,respectively.The meth-od surpasses mainstream semi-supervised approaches,demonstrating its effectiveness in med-ical image segmentation.

semi-supervised learningimage semantic segmentationcross-teachingcycled pseudo label

杨云、胡雯青、杨虹、吴亚男

展开 >

陕西科技大学电子信息与人工智能学院,陕西西安 710021

西安富德医疗电子有限公司,陕西西安 710075

西安计量技术研究院,陕西西安 710199

半监督学习 图像语义分割 交叉教学 循环伪标签

2025

陕西科技大学学报
陕西科技大学

陕西科技大学学报

北大核心
影响因子:0.418
ISSN:2096-398X
年,卷(期):2025.43(1)