首页|基于多分支增强和融合注意力机制的水下图像增强算法

基于多分支增强和融合注意力机制的水下图像增强算法

扫码查看
由于水对光的折射和吸收,水下图像通常会出现严重的退化,如色偏、模糊、能见度低等。为了提高水下图像的可视性,提出了一种基于多分支增强和融合注意力机制的水下图像增强网络MBFA-GAN。首先,通过分析水下图像的色彩退化和模糊因素,设计了青品色温修复模块和模糊恢复模块对水下图像进行色彩矫正和模糊恢复。然后,基于对多个分支特征的互补性考虑,采用循环合并策略将多个分支增强的特征利用自适应融合模块进行融合,逐步增强图像细节。最后,设计了融合注意力模块,用于深度挖掘图像在通道维度和像素维度的相关性矩阵,以提高增强图像的真实性。实验结果表明,与现有算法相比,提出的水下图像增强算法去模糊效果较好且颜色更真实,可以有效改善水下图像色偏和模糊的问题。
Underwater image enhancement algorithm based on multi-branch enhancement and fusion attention mechanism
Due to the refraction and absorption of light by water,underwater images are often severely degraded,such as color deviation,blurring and low visibility.In order to improve the visibility of underwater images,an underwater image enhancement network MBFA-GAN based on multi-branch enhancement and fusion attention mechanism is proposed.Firstly,by analyzing the color degradation and blur factors of underwater images,a color temperature repair module and a blur recovery module are designed for color correction and blur recovery of underwater images.Then,considering the complementarity of multiple branch features,the cyclic merging strategy is used to fuse the features enhanced by multiple branches with adap-tive fusion module to gradually enhance the image details.Finally,a fusion attention module is designed to deeply mine the correlation matrix in channel dimension and pixel dimension to improve the authenticity of enhanced images.The experimental results show that compared with the existing algorithms,the proposed underwater image enhancement algorithm has bet-ter deblurring effect and more real color,and can effectively improve the problem of underwa-ter image color deviation and blurring.

underwater image enhancementmulti-branch enhancementfusion attentiongenerative adversarial network

姚斌、韩典芝、徐轩、李婉

展开 >

陕西科技大学电子信息与人工智能学院,陕西西安 710021

水下图像增强 多分支增强 融合注意力 生成对抗网络

2025

陕西科技大学学报
陕西科技大学

陕西科技大学学报

北大核心
影响因子:0.418
ISSN:2096-398X
年,卷(期):2025.43(1)