首页|基于马尔可夫链的COVID-19流行病患病区域变化趋势预测

基于马尔可夫链的COVID-19流行病患病区域变化趋势预测

扫码查看
在COVID-19疫情环境下,为精准预测不同症状状态的人群人数和区域级别的发展趋势,以SIR传染病模型为基础,基于马尔可夫链预测时空相关的特性,设计了感染人群状态与管控措施相关的K-SIRD传染病预测模型。根据COVID-19疫情人群之间传染性的特征及受距离影响造成有效传染数Re的变化而导致不同的症状状态改变的转移规律,实时精准预测了不同状态的人员人数变化,并根据同一区域人群症状状态分布情况不同,针对不同级别的区域采用不同等级的管控措施。
Prediction of the areal trends of COVID-19 epidemic based on markov-chain
In the COVID-19 epidemic environment,in order to accurately predict the number of people with different symptom states and the development trend at the regional level,based on the SIR infectious disease model and the spatio-temporal correlation under Markov chain prediction,designs the K-SIRD infectious disease prediction model related to the infected population state and the control measures.According to the characteristics of the contagious-ness among the COVID-19 epidemic population and the transfer law of different symptomatic state changes caused by the changes in the effective number of infectious Re affected by dis-tance,the real-time accurate prediction of the changes in the number of people in different states,and according to the distribution of the symptomatic state of the population in the same area is different,different levels of control measures are used for different levels of the area.

K-SIRD modelCOVID-19Markov-chainthe effective reproduction number

王鑫、王令戈、师鹏柔

展开 >

陕西科技大学电子信息与人工智能学院,陕西西安 710021

K-SIRD模型 COVID-19 马尔可夫链 有效繁殖数

2025

陕西科技大学学报
陕西科技大学

陕西科技大学学报

北大核心
影响因子:0.418
ISSN:2096-398X
年,卷(期):2025.43(1)