首页|积极心理学更智能:机器学习与自发生成数据集的新途径

积极心理学更智能:机器学习与自发生成数据集的新途径

扫码查看
本文探讨了积极心理学在计算智能快速发展时所面临的具体挑战,分析了机器学习和自发生成数据集在应对这些挑战时的巨大潜力.机器学习可从高维数据中提取与人类认知相关的非线性关系,成为研究人类认知和情感的新途径.自发生成数据集能更真实地反映人类行为和心理过程,为研究者提供高效的研究素材.这些新兴技术为积极心理学提供了全新视角,能更全面地认识人类行为和心理并推动文化差异性研究、理论更新和干预策略评估.未来研究需探索机器学习、自发生成数据集与积极心理学理论的结合,以深入理解人类行为和情感的多样性和复杂性.
AI-driven Positive Psychology:New Pathways with Machine Learning and Naturally Occurred Datasets
This paper explores the specific challenges of positive psychology in the rapid development of computational intelligence,and analyzes the potential opportunities for machine learning and spontaneous generation of datasets to address these challenges.Machine learning can extract nonlinear relationships related to human cognition from high-dimensional data,which may become a new method for studying human cognition and emotions.Naturally occurred datasets can more realistically reflect human behavior and psychological processes,providing researchers with efficient research materials.These emerging technologies provide positive psychology with a whole new perspective,which can more comprehensively understand human behavior and psychology,promote research on cultural differences,theoretical updates,and intervention strategy evaluations.Future research needs to explore the integration of machine learning,naturally occurred dataset,and positive psychology theories to gain an in-depth understanding of the diversity and complexity of human behaviors and emotions.

positive psychologymachine learningnaturally occurred dataset(NODS)computational intelligence

彭凯平、童松、吴晟

展开 >

清华大学心理学系,北京 100083

清华大学 国际文化科技研究中心,北京 100083

清华大学深圳国际研究生院,广东深圳 518055

积极心理学 机器学习 自发生成数据集(NODS) 计算智能

清华大学春风基金国家博士后国际交流计划引进项目

2020Z99CFG013YJ20210266

2024

西北师大学报(社会科学版)
西北师范大学

西北师大学报(社会科学版)

CSSCICHSSCD北大核心
影响因子:0.607
ISSN:1001-9162
年,卷(期):2024.61(2)
  • 2