首页|非线性BBM方程BDF2混合有限元方法的超逼近分析

非线性BBM方程BDF2混合有限元方法的超逼近分析

扫码查看
针对非线性Benjamin-Bona-Mahony(BBM)方程,在时间上构造了 2 阶的Backward differential formula(BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量( →q)的超逼近结果.最后利用一个算例验证理论结果的正确性.
Analysis on Superclose Results for Nonlinear BBM Equation with BDF2 Mixed Finite Element Method
A second-order Backward Differential Formula(BDF2)time discretization scheme is constructed for the nonlinear Benjamin-Bona-Mahony(BBM)equation,and a mixed finite element method incorporating bi-linear and zero-order Raviart-Thomas(RT)elements is employed to investigate its superconvergence properties.Firstly,the stability of the approximate equation is established using certain transformation techniques.Second-ly,by utilizing the boundedness of the approximate solution,superclose results are derived.Finally,an example is presented to verify the validity of the theoretical findings.

nonlinear BBM equationBDF2 mixed finite element methodstabilitysuperclose analysis

王俊俊、江梦萍、关振

展开 >

平顶山学院 数学与统计学院,河南 平顶山 467000

非线性BBM方程 BDF2混合有限元方法 稳定性,超逼近分析

2024

许昌学院学报
许昌学院

许昌学院学报

影响因子:0.196
ISSN:1671-9824
年,卷(期):2024.43(5)