首页|基于改进神经网络的弱光图像自动分割算法

基于改进神经网络的弱光图像自动分割算法

扫码查看
弱光条件下图像的对比度低、细节模糊、噪声干扰大.为了使分割后的弱光图像边缘更加整齐,分割目标更加完整,提出一种基于改进神经网络的弱光图像自动分割算法.采用SLIC方法展开弱光图像超像素,根据弱光图像中所存在的像素相似性,对所生成的全部超像素块展开超像素块融合处理;并结合改进的神经网络,分割出弱光图像的目标图像与背景图像,实现弱光图像自动分割.实验结果表明,所提方法的弱光图像超像素融合效果好、分割精度高.
Automatic Segmentation Algorithm for Low-Light Images Based on Improved Neural Networks
Under low-light conditions,images suffer from low contrast,blurred details,and substantial noise interference.To achieve neater edges and more complete segmentation targets in low-light images,an automatic segmentation algorithm for low-light images based on an improved neural network is proposed.The SLIC method is employed to perform superpixel segmentation on low-light images.Subsequently,all generated superpixel blocks are fused based on the pixel similarity within the low-light images.Furthermore,by incorporating an im-proved neural network,the target image and background image of the low-light image are segmented,enabling automatic segmentation of the low-light image.The experimental results demonstrate that the proposed method ex-hibits a good superpixel fusion effect for low-light images,achieves high segmentation accuracy,and is suitable for automatic segmentation tasks under low light conditions.

low-light imageimage segmentationimproved neural networksSLIC methodhyperpixel segmentation

李胜、呼家龙、蒋国庆

展开 >

马鞍山职业技术学院 电子信息系,安徽 马鞍山 243031

弱光图像 图像分割 改进神经网络 SLIC方法 超像素分割

2024

许昌学院学报
许昌学院

许昌学院学报

影响因子:0.196
ISSN:1671-9824
年,卷(期):2024.43(5)