首页|轨道障碍物检测应用及展望

轨道障碍物检测应用及展望

扫码查看
随着城市化和交通网络不断扩张,确保铁路和地铁轨道上的障碍物及时检测和移除,对于轨道交通系统安全至关重要.文章研究当前先进的轨道障碍物检测技术,特别关注基于深度学习应用,探讨该领域未来的潜在进展.深度学习技术在计算机视觉领域取得显著成功,能够有效识别和分类复杂图像数据,因此在轨道障碍物检测方面具有巨大潜力.通过深入分析这些技术前景,阐明未来轨道障碍物探测领域的挑战和机遇,为相关研究提供有价值的建议和指导.同时提出一种基于动态背景建模与三维点云分割的方法以尝试解决现有主流方法中存在的缺陷,希望通过这一综合方法,提高轨道障碍物检测系统的性能,增强轨道交通安全性,为乘客提供更加可靠的出行体验.
Applications and prospects of track obstacle detection techniques
As urbanization and transportation networks continue to expand,ensuring the detection and removal of obstacles on rail and metro tracks in time is critical to the safety of public transportation systems.The main goal of the research in this article is to provide an overview of current state-of-the-art track obstacle detection techniques,with a particular focus on deep learning-based applications,and to explore the latent future progress in this field.Deep learning techniques have been remarkably successful in the field of computer vision to effectively recognize and classify complex image data,and therefore have great potential for detecting obstacles on tracks.By analyzing these technological prospects in-depth,this article aims to clarify the future challenges and opportunities in the field of orbital obstacle detection,and to provide valuable insights and guidance for related research.Meanwhile,this article proposes a method based on dynamic background modeling and point clouds 3D-segmentation,intending to break through the limitations of mainstream methods.Through this integrated approach,it is hoped that rail obstacle detection systems can be improved,and that the safety of rail transportation can be increased,providing passengers with more reliable travel experiences.

rail transitobstacledetectionpoint cloudsmodelinginteractive segmentationapplicationprospect

宋宇、吴宽、张克林、刘宁、胡强

展开 >

北京京城地铁有限公司,北京 101312

轨道交通 障碍物 检测 点云 建模 交互式分割 应用 展望

2024

现代城市轨道交通
中国铁道科学研究院

现代城市轨道交通

影响因子:0.301
ISSN:1672-7533
年,卷(期):2024.(4)
  • 33