首页|基于EMD-KPCA-LSTM的光伏功率预测模型分析

基于EMD-KPCA-LSTM的光伏功率预测模型分析

扫码查看
为了充分解决光伏预测中预测难度较大、随机性强以及预测时间跨度大的问题,提高光伏功率的预测精度,提出了一种基于EMD-KPCA-LSTM的光伏功率预测模型.采用EMD及PCA算法,将PCA与核函数融合,进一步处理非线性数列,并降低数据的维度,提高处理的精准度.依靠LSTM网络,构建多元的动态数字模型,为更加可靠地预测光伏功率提供了一种新的算法.
Photovoltaic Power Prediction Model Based on EMD-KPCA-LSTM
In order to adequately solve the problems of high prediction difficulty,stochasticity and large prediction time span in photovoltaic(PV)forecasting,and to improve the prediction accuracy of PV power,a PV power prediction model based on EMD-KPCA-LSTM is proposed.Using EMD and PCA algorithms,PCA is fused with the kernel function to further process the nonlinear series and reduce the dimensionality of the data to improve the accuracy of the processing.Relying on the LSTM network,a multivariate dynamic numerical model is constructed,which provides a new algorithm for more reliable prediction of PV power.

photovoltaic power predictionempirical modal decompositionkernel principal component analysislong short-term memory neural network

王宇驰、赵延阳、张树军

展开 >

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125105

葫芦岛八家矿业股份有限公司,辽宁 葫芦岛 125105

光伏功率预测 经验模态分解 核主成分分析 长短期记忆神经网络

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(2)
  • 5