首页|基于ELM方法的锂电池充电SOC和SOH状态评估分析

基于ELM方法的锂电池充电SOC和SOH状态评估分析

扫码查看
通过集成极限学习机(ELM)模型与集成算法来提升学习效率,设计了电池健康特征模型来实现各充电状态的迭代计算.研究结果表明:SOC和SOH达到最大相关度,可以有效防止电池发生过充或过放的问题.充电终止电压由电动汽车用户使用需求决定,根据恒流恒压充电分界来估算截止电压,完成联合估算SOC与SOH的效果.该研究有助于提高电动汽车锂电池的使用效率.
SOC and SOH State of Charge Assessment of Li-ion Batteries Based on ELM Approach
By integrating the Extreme Learning Machine(ELM)model with an integrated algorithm to improve the learning efficiency,a battery health characteristic model is designed to realize the iterative calculation of each charging state.The results show that SOC and SOH reach the maximum correlation,which can effectively prevent the battery from overcharging or overdischarging.The charging termination voltage is determined by the electric vehicle user's usage demand,and the cut-off voltage is estimated based on the constant-current and constant-voltage charging demarcation to accomplish the effect of joint estimation of SOC and SOH.This study helps to improve the efficiency of lithium batteries for electric vehicles.

lithium batterystate of chargestate of healthintegrated limit learning machine

汤瑞

展开 >

开封技师学院,河南 开封 475000

锂电池 荷电状态 健康状态 集成极限学习机

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(4)
  • 12