首页|基于双向长短期记忆神经网络的电力负荷预测分析

基于双向长短期记忆神经网络的电力负荷预测分析

扫码查看
基于对双向长短期记忆神经网络模型的搭建,通过输入已知的部分数据对模型进行训练,使其对另一部分数据进行预测,并使预测结果与已知数据的另一部分进行对比,通过仿真结果验证了双向长短期记忆神经网络模型应用于电力负荷预测的优良性.双向长短期记忆神经网络(BILSTM)进行电力负荷预测可以提高预测的准确性、处理复杂的非线性关系、实现实时性,并且节约电力系统运营成本,具有重要的实际意义.
Electricity Load Forecasting Based on Bidirectional Long and Short-term Memory Neural Networks
The model is trained by inputting part of the known data,so that it can predict the other part of the data and compare the prediction results with the other part of the known data,and the results of the simulation are verified to show the excellent performance of the model applied to power load forecasting.The simulation results verify the excellence of the two-way long short-term memory neural network model applied to power load forecasting.It is of great practical significance that BILSTM can improve the accuracy of forecasting,handle complex nonlinear relationships,achieve real-time performance,and save the operating cost of power system.

load forecastingneural networkmodellingpower system

韩宇、史麦瑞、王际涵、吕峥

展开 >

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125105

辽宁省广播电视葫芦岛绥中中波站,辽宁 葫芦岛 125105

负荷预测 神经网络 模型 电力系统

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(4)
  • 5