首页|基于SSA-ELM模型的波浪能发电功率短期预测分析

基于SSA-ELM模型的波浪能发电功率短期预测分析

扫码查看
提出基于麻雀搜索算法优化极限学习机的波浪能发电功率组合预测系统,利用SSA-ELM(麻雀搜索算法优化极限学习机)模型,根据风向、风速、温度以及气压等气象数据,进行波高的短期预测.在此基础上,针对自参考点吸收式波浪能发电装置构建了发电功率的数学模型.通过模型预测效果分析,验证了该波浪能发电功率预测模型的稳定性与可行性.
Short-Term Prediction of Wave Energy Power Generation Based on SSA-ELM Model
The stochasticity and volatility of wave energy are large,and when point-absorption wave energy generators are applied to wave energy generation,the power output needs to be predicted in advance to ensure the safe and stable operation of the power grid.Therefore,a combined prediction system for wave power generation based on the Sparrow Search Algorithm Optimised Extreme Learning Machine(SSA-ELM)model is proposed.Firstly,the SSA-ELM model is used to make short-term prediction of wave heights based on the meteorological data such as wind direction,wind speed,temperature and barometric pressure.On this basis,a mathematical model of power generation was constructed for the self-reference point absorption wave energy generator.The stability and feasibility of the wave energy power prediction model are verified by analysing the prediction effect of the model.

wave energypredictionextreme learning machinesparrow search algorithm

徐思文、赵家伟

展开 >

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125000

波浪能 预测 极限学习机 麻雀搜索算法

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(4)
  • 10