首页|基于改进灰狼优化算法的导航机器人路径规划

基于改进灰狼优化算法的导航机器人路径规划

扫码查看
路径规划对于导航机器人技术是极为重要的,寻找最优路径使机器人能够自主地避开障碍物的同时提高效率并到达目标位置.提出了 一种基于改进灰狼优化算法的导航机器人路径规划方法.该算法将灰狼优化算法与基于维度学习信息共享策略和约束条件相结合,以实现导航机器人在路径规划的优良性.然后,基于这种方法进行了实验研究,包括仿真实验和实际场景实验.实验结果表明,该方法在路径长度、搜索时间和路径可行性等方面都取得了显著的优化效果.
Path Planning for Navigating Robots Based on Improved Grey Wolf Optimization Algorithm
Path planning is extremely important for navigational robotics,and finding the optimal path allows the robot to avoid obstacles autonomously while improving efficiency and reaching the target location.A path planning method for navigating robots based on an improved grey wolf optimisation algorithm is proposed.The algorithm combines the grey wolf optimisation algorithm with a dimensional learning based information sharing strategy and constraints to achieve excellence in path planning for navigating robots.Then,an experimental study was conducted based on this method,including simulation experiments and real scenario experiments.The experimental results show that the method achieves significant optimisation results in terms of path length,search time and path feasibility.

navigation robotpath planningimproved grey wolf optimisation algorithmconstraints

祝少卿、潘志博、张钧皓、张沥新、李林青

展开 >

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125000

导航机器人 路径规划 改进灰狼优化算法 约束条件

大学生创新创业训练计划校级项目

X202310147064

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(5)
  • 2