首页|基于AOA-LSTM方法工业机器人轴承剩余使用寿命预测

基于AOA-LSTM方法工业机器人轴承剩余使用寿命预测

扫码查看
为了提高工业机器人运行过程中振动控制精度,设计了一种基于算数优化算法(AOA)改进长短时记忆网络(LSTM)方法工业机器人轴承剩余使用寿命预测方法,并采用RMSE和MAE指标对预测模型进行评估.研究结果表明:损失曲线随着迭代次数增加趋于稳定,评估证明方法取得较好的预测结果.AOA-LSTM与实际值预测结果拟合度更高,较小的预测误差证明了方法的有效性.该方法有助于提高工业机器人轴承的使用效率,为后续整机性能测试奠定基础.
Application of AOA Optimization LSTM Method in the Remaining Life Prediction of Machine Tool Bearings
In order to improve the vibration control accuracy of industrial robots during operation,an algorithm based on arithmetic optimization algorithm(AOA)and improved Short time memory network(LSTM)method was designed to predict the residual service life of industrial robot bearings.RMSE and MAE indexes were used to evaluate the prediction model.The results show that the loss curve tends to be stable with the increase of the number of iterations,and the evaluation proves that the proposed method achieves better prediction results.Aaa-lstm has a higher fitting degree to the actual prediction results,and the smaller prediction error proves the effectiveness of the method.This method is helpful to improve the use efficiency of industrial robot bearings,and lays a foundation for the subsequent whole machine performance test.

industrial robot bearingremaining service lifearithmetic optimization algorithmlong term memory network

王晋虎

展开 >

新乡职业技术学院数控技术学院,河南 新乡 453000

工业机器人轴承 剩余使用寿命 算术优化算法 长短时记忆网络

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(5)
  • 11