首页|基于CEEMDAN-SVM算法的工业机器人轴承故障诊断研究

基于CEEMDAN-SVM算法的工业机器人轴承故障诊断研究

扫码查看
工业机器人传动效率离不开轴承,为了提高对轴承振动信号的识别能力,设计了一种基于自适应噪声完备集成经验模态分解(CEEMDAN)-支持向量机(SVM)算法的工业机器人轴承故障诊断方法.采用CEEMDAN对振动信号分解,基于相关系数筛选出包含关键信息的IMF分量,通过SVM完成工业机器人轴承故障类型识别.研究结果表明:以相关系数0.2为衡量标准,IMF1-IMF5相关系数均在0.2之上,分类准确率为100%,表明该算法能够有效地检测工业机器人轴承的故障类别.相比较EMD以及PSO方法,CEEMDAN算法分类准确率明显最高,信号分解有助于EMDE算法,验证了信号分解的有效性.算法具有可观的故障识别精度和稳定性,可拓宽应用到其他的传动领域.
Research on Bearing Fault Diagnosis of Industrial Robot Based on CEEMDAN-SVM Algorithm
The transmission efficiency of industrial robots cannot be separated from bearings.In order to improve the recognition ability of bearing vibration signals,a bearing fault diagnosis method based on adaptive noise complete integrated Empirical Mode decomposition(CEEMDAN)-support vector machine(SVM)algorithm was designed for industrial robots.The vibration signal was decomposed by CEEMDAN,the IMF component containing the key information was screened based on the correlation coefficient,and the bearing fault type of industrial robot was identified by SVM.The research results show that the correlation coefficients of IMF1-IMF5 are all above 0.2,and the classification accuracy is 100%,which indicates that the algorithm can effectively detect the fault categories of industrial robot bearings.Compared with EMD and PSO methods,the classification accuracy of CEEMDAN algorithm in this paper is obviously the highest,and signal decomposition is helpful to EMDE algorithm,which verifies the effectiveness of signal decomposition.The proposed algorithm has considerable accuracy and stability in fault identification,and can be applied to other transmission fields.

industrial robot bearingvibration signalfault identificationfeature extraction

王启晗、张卫斌

展开 >

新乡职业技术学院智能制造学院,河南 新乡 453006

工业机器人轴承 振动信号 故障识别 特征提取

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(5)
  • 9