首页|基于深度学习的自注意力特征融合车辆检测方法

基于深度学习的自注意力特征融合车辆检测方法

扫码查看
针对目前车辆目标检测任务中模型特征表征能力不足、检测精度低、重叠漏检等问题,提出一种基于YOLOv8改进的自注意力融合车辆目标检测模型.首先,提出一种自注意力卷积聚合特征提取模块(AC-ReELAN),该模块采用stage-level方法融合ACMix与CBS,通过残差链接结合多粒度特征信息,改善原网络主干网络结构,提升模型特征信息提取与表征能力;其次,在Neck部分引入动态双维度注意力机制(D_CBAM)通过设计自适应卷积取值空间,动态地限制权值范围,建立多通道权值赋予机制,在保证模型精简的同时提升模型的滤波能力,加强对目标的关注度,增强模型精确定位能力;最后,引入MPDIoU边界框回归损失函数,优化回归指标,简化计算过程,加快模型收敛速度,提升模型鲁棒性.实验结果表明,改进后模型平均检测进度达到了 85.7%,相较YOLOv8提高了 10.1个百分点,检测速度达到51 FPS,达到实时检测的要求.
Deep Learning Based Self-Attentive Feature Fusion Vehicle Detection Method
Aiming at the problems of insufficient model feature characterization ability,low detection accuracy,and overlapping leakage detection in the current vehicle target detection task,a self-attention feature fusion vehicle target detection model based on YOLOv8 improvement is proposed.First,a self-Attention Convolutional aggregation feature extraction module(AC-ReELAN)is proposed,which fuses ACMix and CBS using a stage-level method,combines multi-granularity feature information through residual links,improves the original network backbone network structure,and enhances the model feature information extraction and characterization ability;second,a DynamicConv by CBAM bi-dimensional attention mechanism(D_CBAM)is introduced in the Neck part by designing the adaptive convolutional value space,dynamically restricting the range of weights,and establishing a multi-channel weight assignment mechanism,which improves the filtering ability of the model while ensuring the model is streamlined,strengthens the attention to the target,and enhances the model's ability to accurately locate the model;finally,the MPDIoU bounding box regression loss function is introduced to optimize regression indexes,simplify the computation process,accelerate the model's convergence speed,and improve the model robustness.The experimental results show that the average detection progress of the improved model reaches 85.7%,which is 10.1 percentage points higher compared with Y OLOv8,and the detection speed reaches 51 frames per second,which meets the requirement of real-time detection.

self-attentionefficient layer aggregation networkdynamic convolutionCBAMMPDIoU

黄艳国、饶泽浩、李罗

展开 >

江西理工大学电气工程与自动化学院,江西 赣州 341000

自注意力 高效聚合网络 动态卷积 CBAM MPDIoU

国家自然科学基金项目

72061016

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(6)
  • 6