首页|基于粒子群算法优化神经网络的短期负荷预测

基于粒子群算法优化神经网络的短期负荷预测

扫码查看
基于粒子群算法(PSO)的神经网络在短期负荷预测中展现出卓越的效果.通过PSO神经网络的权重和偏置得以有效优化,使其更快、更准确地学习并适应电力系统的负荷变化.该方法通过随机初始化一群"粒子",每个粒子代表神经网络的一组参数,然后通过迭代更新粒子位置,实现了对神经网络模型的全局搜索和优化.研究结果表明,经PSO优化的神经网络在短期负荷预测中呈现出更高的拟合度,与实际负荷曲线更为贴近,且相较于传统神经网络,其预测误差显著降低.这一方法为电力系统提供了一种可靠的工具,有效提升了短期负荷预测的准确性和可靠性.
Short-Term Load Forecasting Based on Particle Swarm Algorithm Optimised Neural Network
Neural networks based on particle swarm algorithm(PSO)show excellent results in short-term load forecasting.Through PSO,the weights and biases of the neural network are effectively optimised so that it learns and adapts to the load changes of the power system faster and more accurately.The method achieves global search and optimisation of the neural network model by randomly initialising a group of"particles",each representing a set of parameters of the neural network,and then iteratively updating the particle positions.The results show that the PSO-optimised neural network exhibits a higher degree of fit in short-term load forecasting,which is closer to the actual load profile,and its prediction error is significantly reduced compared with the traditional neural network.This method provides a reliable tool for power systems and effectively improves the accuracy and reliability of short-term load forecasting.

short-term load forecastingparticle swarm algorithmneural network

李校良、陈逸飞、李梓萍、闫泓全、雷帅帅

展开 >

辽宁工程技术大学,辽宁 葫芦岛 125000

短期负荷预测 粒子群算法 神经网络

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(6)
  • 3