首页|基于PSO-SVM的短期水电功率预测模型研究

基于PSO-SVM的短期水电功率预测模型研究

扫码查看
针对短期水电功率影响分析,为提高水电功率预测的准确性,通过粒子群优化算法优化支持向量机参数,建立较优的预测模型并对水电功率进行预测.利用SVM模型对水电功率特征信息进行分类与识别,引入PSO对SVM的优化算法模型对其参数进行优化,提高模型的分类识别准确率.实验结果表明,PSO-SVM模型能够显著提高水电功率预测的精度和效率,具有一定的实用价值.
Research on Short-Term Hydropower Power Prediction Model Based on PSO-SVM
For short-term hydropower power impact analysis,in order to improve the accuracy of hydropower power prediction,Particle Swarm Optimization was used to optimize the parameters of support vector machines(SVM).The optimal prediction model is established and the hydropower power is forecasted.Firstly,SVM model is used to classify and identify hydropower power characteristics.Secondly,PSO was introduced to the SVM optimization algorithm model to optimize its parameters and improve the classification recognition accuracy of the model.The experimental results show that the PSO-SVM model can significantly improve the accuracy and efficiency of hydropower power prediction,and has certain practical value.

hydropower power forecastparticle swarm optimization algorithmsupport vector machine

王鹤炅、赵家伟

展开 >

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125105

水电功率预测 粒子群优化算法 支持向量机

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(6)
  • 2