首页|基于GWO-BP-AdaBoost的多风电场功率预测

基于GWO-BP-AdaBoost的多风电场功率预测

扫码查看
通过GWO-AdaBoost模型来优化BP神经系统网络,实现其对多因素分类处理能力的提高.经过实验表明,优化后的预测模型与BPNN和BPNN-AdaBoost对比,各项误差指标均减少,实现了多风电场功率预测准确度的提高.
Multi-Wind Farm Power Prediction Based on GWO-BP-AdaBoost
The GWO-AdaBoost model is used to optimise the BP neural system network to achieve the improvement of its multifactor classification processing ability.After the experiment,it is shown that the optimised prediction model compares with BPNN and BPNN-AdaBoost,and all the error indexes are reduced,which achieves the improvement of the accuracy of power prediction of multi-wind farms.

multi-wind farm power predictionGrey Wolf optimization algorithmBP neural networkAdaBoost algorithm

金书池、王宇驰

展开 >

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125105

多风电场功率预测 灰狼优化算法 BP神经网络 AdaBoost算法

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(8)