首页|集成深度学习与智能优化算法的风电功率精准预测研究

集成深度学习与智能优化算法的风电功率精准预测研究

扫码查看
针对现有风电功率预测模型在处理这些复杂数据时的局限性,提出了一系列基于改进深度学习网络和智能优化算法的预测模型.通过集成长短时记忆(LSTM)神经网络、门控循环单元(GRU)和时变深度前馈神经网络(ForecastNet),并结合残差网络、麻雀搜索算法(SSA)进行模型优化.实验结果表明,所提出的集成模型在多个真实风电场数据集上的预测性能均优于现有的预测方法,展现了优异的预测精度和实时性.
Research on Accurate Wind Power Prediction by Integrating Deep Learning and Intelligent Optimization Algorithm
Aiming at the limitations of existing wind power prediction models in handling these complex data,a series of prediction models based on improved deep learning networks and intelligent optimization algorithms are proposed.By integrating a long short-term memory(LSTM)neural network,gated recurrent unit(GRU)and time-varying deep feed-forward neural network(ForecastNet),and combining residual network and sparrow search algorithm(SSA)for model optimization.Experimental results show that the prediction performance of the proposed integrated model on multiple real wind farm datasets is better than existing prediction methods,demonstrating excellent prediction accuracy and real-time performance.

wind power predictiondeep learninglong short-term memory network(LSTM)gated recurrent unit(GRU)intelligent optimization algorithm

谢欣宇

展开 >

石河子大学,新疆 石河子 832003

风电功率预测 深度学习 长短时记忆网络(LSTM) 门控循环单元(GRU) 智能优化算法

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(10)