首页|基于卷积神经网络多模态识别的高空输电线路抗干扰巡检无人机研究

基于卷积神经网络多模态识别的高空输电线路抗干扰巡检无人机研究

扫码查看
针对高空输电线路抗干扰巡检无人机的多模态识别问题,提出了一种基于卷积神经网络的方法.针对高空输电线路巡检中存在的天气、杂乱背景和信号干扰等问题,采用多模态传感器进行数据采集,并将其输入到卷积神经网络中进行特征提取和分类.首先,设计了一个多模态传感器装置,包括Openmv识别模块、红外摄像头、高清摄像头和激光雷达.这些传感器可以同时获取可见光图像、红外图像和雷达反射信号,提供了丰富的信息来源.同时还研究出一种抗干扰策略,来保证巡检无人机正常、高效地运行.
Study on Anti-Interference Inspection UAV for High Altitude Transmission Lines Based on Convolutional Neural Network Multimodal Recognition
A method based on convolutional neural network is proposed for the multimodal recognition of anti-interference inspection UAVs for high-altitude transmission lines.Aiming at the problems of weather,cluttered background and signal interference in high-altitude transmission line inspection,this paper adopts multimodal sensors for data acquisition and inputs them into convolutional neural network for feature extraction and classification.First,a multimodal sensor device is designed,including Openmv recognition module,infrared camera,high-definition camera and LiDAR.These sensors can acquire visible images,infrared images and radar reflection signals at the same time,providing a rich source of information.An anti-interference strategy is also studied to ensure the normal,efficient operation of the inspection UAV.

high altitude transmission lineUAVmultimodal recognitionanti-interference

邱道顺、陈凯、王远新、苏彦基、吴冠霖、张宜寒

展开 >

郑州科技学院,河南 郑州 450064

高空输电线路 无人机 多模态识别 抗干扰

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(10)