首页|基于改进Faster R-CNN的变电设备热故障诊断探究

基于改进Faster R-CNN的变电设备热故障诊断探究

扫码查看
为了建立智能化的变电设备热故障诊断方法,分析了高压套段、断路器、隔离开关、避雷器、电流互感器、电压互感器的热故障成因,对深度学习算法Faster R-CNN进行改进,提高了图像识别的准确率、召回率、不同类别的平均分类精度以及检测速率等性能指标,再运用改进后的算法分类识别变电设备的红外图像,建立针对热故障的诊断流程和判断依据.结果显示,基于改进Faster R-CNN算法的热故障诊断模型具有良好的应用效果.
An Investigation of Thermal Fault Diagnosis of Substation Equipment Based on Improved Faster R-CNN
In order to establish an intelligent thermal fault diagnosis method for substation equipment,the research process analyzes the causes of thermal faults of high-voltage sets,circuit breakers,disconnect switches,surge arresters,current transformers,voltage transformers,and improves the deep learning algorithm Faster R-CNN,which improves the performance indexes of the accuracy of image recognition,the recall rate,the average classification accuracy of different categories,and the detection rate,then the algorithm is applied to classify and identify the thermal faults of substation equipment.The improved algorithm is used to classify and recognize infrared images of substation equipment,and establish the diagnosis process and judgment basis for thermal faults.The results show that the thermal fault diagnosis model based on the improved Faster R-CNN algorithm has good application effect.

substation equipmentimproved Faster R-CNN algorithmthermal fault diagnosis

刘晓敏

展开 >

国网山西省电力公司晋中供电公司,山西 晋中 030600

变电设备 改进Faster R-CNN算法 热故障诊断

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(11)