首页|基于CNN-BILSTM-Attention模型的光伏发电预测研究

基于CNN-BILSTM-Attention模型的光伏发电预测研究

扫码查看
提出了一种结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制的复合模型(CNN-BiLSTM-Attention),利用CNN提取时间序列数据的局部特征,通过BiLSTM捕获数据中的长期依赖关系,引入注意力机制来增强模型对重要信息的关注度.通过在真实数据集上的实验,验证了所提模型相比于传统的时间序列预测方法和单一深度学习模型在预测精度和稳定性方面的优势[1-2].
Research on Photovoltaic Power Generation Prediction Based on CNN-BILSTM-Attention Modeling
A composite model combining convolutional neural network(CNN),bi-directional long and short-term memory network(BiLSTM)and attention mechanism(CNN-BiLSTM-Attention)is proposed CNN is utilized to extract the local features of the time series data,then the long-term dependencies in the data are captured by BiLSTM,and finally,the attention mechanism is introduced to enhance the model's attention to the important information.Through experiments on real datasets,the advantages of the proposed model over traditional time series prediction methods and a single deep learning model in terms of prediction accuracy and stability are verified.

time series forecastingdeep learningconvolutional neural network(CNN)bidirectional long short-term memory network(BiLSTM)attention mechanism

许远东

展开 >

石河子大学,新疆 石河子 832003

时间序列预测 深度学习 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 注意力机制

2024

现代工业经济和信息化

现代工业经济和信息化

影响因子:0.485
ISSN:
年,卷(期):2024.14(11)