首页|基于GA-KFCM算法的高速公路交通运行状态评价研究

基于GA-KFCM算法的高速公路交通运行状态评价研究

扫码查看
为提升高速公路交通运行状态评价的效果,提出GA-KFCM(genetic algorithm-kernel fuzzy C-means,基于遗传算法改进的核模糊C均值)聚类算法,并结合实例数据对不同方案的分类效果开展验证分析.首先,分析高速公路交通运行状态评价的范围及等级;然后,提出核函数改进的KFCM(kernel fuzzy C-means,核模糊C均值)聚类算法.在此基础上,采用遗传算法弥补初始化聚类中心随机的缺陷,考虑到在选取不同参数时判别模型的差异较大,结合实例数据对改进前后模型的交通运行状态开展聚类分析,并采用综合指标评估不同试验方案的优劣.试验结果表明:与FCM(fuzzy C-means,模糊C均值)聚类算法相比,GA-KFCM算法的聚类效果提升5倍左右;三维交通参数的交通运行状态判别可靠度最高.
Study on Highway Traffic Operation State Evaluation Based on GA-KFCM Algorithm
In order to improve the effect of highway traffic flow status evaluation,the study proposes an improved KFCM algo-rithm based on genetic algorithm,and verifies the classification effect of different schemes combined with case data.Firstly,the evaluation range and grade of highway traffic operation status are analyzed,and then a fuzzy C-means clustering analysis al-gorithm optimized by kernel function is proposed.On this basis,genetic algorithm is adopted to make up for the defects of ini-tial clustering center randomness.Combined with the case data,cluster analysis is carried out on the traffic running state of the improved model before and after the selection of different parameters,and the advantages and disadvantages of different ex-perimental schemes are evaluated by comprehensive indicators.The experimental results show that the clustering performance of GA-KFCM algorithm is about 5 times higher than that of FCM algorithm.In addition,the reliability of judging traffic operat-ing state under three-dimensional traffic parameters is the highest.

highwaytraffic operation status evaluationcluster analysiskernel functiongenetic algorithm

倪琪、牛传同、方为舟

展开 >

华设设计集团股份有限公司,南京 210014

江苏省交通工程建设局,南京 210004

江苏中路工程技术研究院有限公司,南京 211899

高速公路 交通运行状态评价 聚类分析 核函数 遗传算法

2024

现代交通技术
江苏省交通科学研究院

现代交通技术

影响因子:0.431
ISSN:1672-9889
年,卷(期):2024.21(2)
  • 10