首页|两种模型在肿瘤患者PICC相关血流感染风险预测中的应用

两种模型在肿瘤患者PICC相关血流感染风险预测中的应用

扫码查看
目的 针对肿瘤患者经外周静脉置入中心静脉导管(peripherally inserted central catheter,PICC)相关血流感染(central line associated bloodstream infection,PICC-CLABSI)风险预测问题,利用Logistic回归和极限学习机(extreme learning machine,ELM)分别建立预测模型并验证其预测效果.方法 回顾性收集 2019 年 1 月至 2023 年 3 月在山西省某三级甲等综合医院肿瘤科接受PICC置管的 1146 例患者的临床病历资料,将 2019 年 1 月至 2021 年 12 月收集的 786 例PICC置管患者的临床病历资料作为建模组,将 2022 年 1 月 2023 年 3 月收集的 360 例患者的临床资料作为验证组.采用χ 2 检验对建模组数据进行分析,将有统计学意义的变量进行Logistic回归分析,构建风险预测模型,并绘制列线图,采用Hosmer-Lemeshow检验和受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)评价该预测模型的拟合度及预测效果;将Logistic回归分析具有统计学意义的危险因素作为ELM预测模型的输入参数,肿瘤患者PICC-CLABSI发生风险作为输出参数,构建ELM预测模型;利用验证组数据对预测性能进行比较.结果 (有)糖尿病史、化疗次数(≥3 次)、维护周期(>7day)、维护地点(院外)、白细胞计数(<3.5×109/L)、白蛋白(<40g/L)是肿瘤患者发生经外周静脉置入中心静脉导管相关血流感染的风险因素(均P<0.05).Logistic风险预测模型的Hosmer-Lemeshow检验结果显示:χ 2=5.201,P=0.736,AUC为 0.860(95%CI:0.799~0.922),灵敏度是 0.893,特异度是 0.704,正确率为 72.8%,表明模型具有良好的预测能力.ELM预测模型的决定系数为 0.823,均方误差为 0.051,模型的拟合度良好,正确率为 74.5%,表明模型具有良好的预测能力.结论 在Logistic回归分析筛选指标基础上建立的Logistic风险预测模型与ELM模型均具有较高的预测精度,可为临床医护人员筛查肿瘤PICC相关血流感染高危患者提供参考.
Prediction of the risk to PICC associated bloodstream infection in cancer patients:a comparative study of two prediction models
Objective To compare the effect of extreme learning machine(ELM)vs logistic regression analysis on prediction of the risk to PICC-related central line associated bloodstream infections(PICC-CLABSI)in cancer patients.Methods Clinical data of 1,146 patients who received PICC,from January 2019 to March 2023,in the Department of Oncology of a ⅢA hospital were analysed.A total of 786 patients who received PICC between January 2019 and December 2021 were assigned to the modelling group,and the rest of 360 patients who received PICC between January 2022 and March 2023 were assigned to the validation group.The risk prediction model was established based on the data of modelling group analysed by Chi-square test,and then by the binary logistic regression to determine the statistically significant variables.Based on the analyses of the two models,a nomogram was plotted to evaluate the fitting and predictive effectiveness.Performance of the two models were evaluated using Hosmer-Lemeshow test as well as the area under the curve(AUC)of receiver operating characteristic(ROC).Risk factors identified by the logistic regression and the PICC-CLABSI risks were used as input and output parameters respectively,to establish an ELM prediction model.The two models were compared in terms of predictive effectiveness using the data of the validation group.Results History of diabetes mellitus,frequency of chemotherapy(≥3 times),maintenance cycle(>7 days),maintenance site(out of hospital),white blood cell count(<3.5×109/L),and albumin(<40g/L)were risk factors for PICC-CLABSI in cancer patients.The logistic regression model demonstrated a good predictability by Hosmer-Lemeshow test(χ 2=5.201,P=0.736),with an AUC-ROC of 0.860(95%CI:0.799~0.922),sensitivity at 0.893,specificity at 0.704 and accuracy at 72.8%.The ELM prediction model exhibited a determination coefficient of 0.823 and mean squared error of 0.051,with a fitting rate at 74.5%,hence it indicated a good predictive power.The ELM model showed a superior predictive power than the logistic regression model.Conclusion The ELM model and logistic regression model,based on logistic regression analysis,offers higher prediction accuracy.It provides valuable guidance to healthcare providers in identification of high risks of PICC-CLABSI for cancer patients.

cancer patientsperipherally inserted central cathetercentral line associated bloodstream infectionlogistic regressionextreme learning machine

于倩倩、赵素琴、赵丽婷、于银梅

展开 >

山西医科大学汾阳学院,山西汾阳,032300

山西医科大学附属汾阳医院,山西汾阳,032300

肿瘤患者 经外周静脉置入中心静脉导管 导管相关血流感染 logistic回归 极限学习机

山西省高等学校科技创新计划项目

为2023L092

2024

现代临床护理
中山大学

现代临床护理

CSTPCD
影响因子:1.317
ISSN:1671-8283
年,卷(期):2024.23(9)