首页|一种基于深度Q网络改进的低轨卫星路由算法

一种基于深度Q网络改进的低轨卫星路由算法

扫码查看
针对卫星节点高速移动,导致节点之间链路状态变化过快的问题,对基于深度强化学习的卫星路由算法进行了研究,由此提出一种基于深度Q网络改进的卫星路由算法。算法采用虚拟节点的思想,以最小跳数为原则,将跳数和距离设置为奖励函数相关参数。同时设置优先经验回放机制,使得算法训练中学习价值最高的样本;最后对网络进行参数的设置并且进行训练。仿真结果表明,从网络传输时延、系统吞吐量、丢包率方面有明显的提升,能有效地适应卫星节点之间链路状态高动态变化。
An Improved Low-orbit Satellite Routing Algorithm Based on DQN
To deal with the problem of fast-changing link-state between satellite nodes due to high-speed movement of satellite nodes,a satellite routing algorithm based on deep reinforcement learning is studied,and an improved satellite routing algorithm based on DQN is proposed.The algorithm adopts the idea of virtual nodes,and sets the number of hops and distance as the related parameters of reward function based on the principle of minimum hops.Meanwhile,a priority experience replay mechanism is set up to train the algorithm by learning samples with the highest value.Finally,the network is set in parameters and is trained.The simulation results show that there are significant improvements in network transmission delay,system throughput,and rate of packet loss,effectively adapting to high dynamic changes in link-state between satellite nodes.

satellite routingvirtual nodepriority experience replayDQN

许向阳、彭文鑫、李京阳

展开 >

河北科技大学 信息科学与工程学院,河北 石家庄 050018

卫星路由 虚拟节点 优先经验回放 深度Q网络

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(1)
  • 10