首页|基于改进YOLOv7的滑雪摔倒检测

基于改进YOLOv7的滑雪摔倒检测

扫码查看
针对目前滑雪场内滑雪人员摔倒检测存在的问题,提出一种基于YOLOv7的目标改进模型。对于检测模型部署在巡逻机器人上致使计算资源受限的问题,在主干网络中引入Ghost模型并在颈部引入GSConv降低模型参数;同时,引入基于并行可变形卷积的注意力机制模块(Parallel Deformable Attention Conv,PDAC)增强模型的精度。改进后的模型相较于原模型在参数上降低了21。6%,GFLOPs降低了27。7%,所需要的计算资源也大大降低。
Ski Fall Detection Based on Improved YOLOv7
A target improvement model based on YOLOv7 is proposed to address the current issues in detecting falls among skiers in ski resorts.For the problem of limited computing resources caused by deploying detection models on patrol robots,the Ghost model is introduced into the backbone network and GSConv is introduced in the neck to reduce model parameters;meanwhile,the Parallel Deformable Attention Conv(PDAC)module is introduced to enhance the accuracy of the model.The improved model has reduced parameters by 21.6%and GFLOPs by 27.7%compared to the original model,and the required computational resources have also been greatly reduced.

target detection technologyYOLOv7ski fall detectionlightweight model

陈园林、高兴华、吴晗林

展开 >

北华大学,吉林 吉林 132013

目标检测技术 YOLOv7 滑雪摔倒检测 轻量化模型

吉林省科技发展计划项目

20220203179SF

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(1)
  • 15