首页|基于UPS策略自我训练的半监督语义分割

基于UPS策略自我训练的半监督语义分割

扫码查看
为提高半监督语义分割的效果,文章提出一种损失归一化技术结合UPS策略的半监督语义分割网络SPNS。利用损失归一化技术缓解标准损失函数的自我训练不稳定问题;UPS策略是结合不确定性估计和消极学习的技术,通过计算输出值的不确定性作为另一种阈值,用以挑选可靠的伪标签,最后利用生成的伪标签和标记数据完成半监督语义分割任务。SPNS方法在PASCAL·VOC数据集上相对于只使用标记数据训练有着+2。06 的效果提升,与其他方法相比也有一定提升。
Semi-supervised Semantic Segmentation Based on UPS Strategy Self Training
To improve the effectiveness of semi-supervised semantic segmentation,this paper proposes a semi-supervised semantic segmentation network SPNS that combines loss normalization technology with UPS strategy.Using loss normalization techniques to alleviate the instability of self training in standard loss functions;the UPS strategy is a technique that combines uncertainty estimation and passive learning,by calculating the incompleteness of the output value as another threshold,reliable pseudo labels are selected,and finally the semi-supervised semantic segmentation task is completed using the generated pseudo labels and labeled data.The SPNS method has +2.06 improvement compared to training with only labeled data on the PASCAL·VOC dataset,and also has some improvement compared to other methods.

semi-supervisedsemantic segmentationself trainingUPSnegative learning

李雨杭、朱小东、杨高明

展开 >

安徽理工大学 计算机科学与工程学院,安徽 淮南 232001

半监督 语义分割 自我训练 UPS 消极学习

安徽高校自然科学研究项目安徽省自然科学基金面上项目

KJ2017A0841808085MF179

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(2)
  • 10