首页|基于MHA-BiLSTM的网络流量异常检测方法

基于MHA-BiLSTM的网络流量异常检测方法

扫码查看
针对传统的网络流量异常检测方法存在识别准确率低、忽略特征之间的相互关系等问题,提出一种基于多头注意力机制(MHA)和融合Highway连接的双向长短时记忆网络(BiLSTM)的网络流量异常检测方法。通过使用多头注意力机制学习数据之间的特征关系,实现对不同维度特征关系的提取,接下来采用多层BiLSTM进行长距离依赖特征提取,并利用Highway连接来缓解深层网络训练中的梯度消失问题。通过NSL-KDD数据集,验证了该方法的准确度和有效性。
Anomaly Detection Method of Network Traffic Based on MHA-BiLSTM
A network traffic anomaly detection method based on MHA and BiLSTM connected with fused Highway is proposed to address the issues of low identification accuracy and neglect of inter-feature relationships in traditional network traffic anomaly detection methods.Through utilizing the MHA mechanism to learn feature relationships among data,the feature relationships of different dimensions are extracted.Subsequently,multiple layers of BiLSTM are employed for capturing long-term dependency features,while the Highway connections are utilized to alleviate the issue of gradient vanishing in deep network training.The accuracy and effectiveness of the proposed method are validated through the NSL-KDD dataset.

abnormal trafficmulti-head self-attention mechanismBiLSTMHighway connectionDeep Learning

叶文冰、詹仕华

展开 >

福建农林大学 机电工程学院,福建 福州 350108

福建农林大学 计算机与信息学院,福建 福州 350028

异常流量 多头自注意力机制 双向长短时记忆网络 Highway连接 深度学习

福建省高等学校教育技术研究会基金项目福建农林大学横向科技创新基金项目

H2000134AKHF190015

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(2)
  • 13