首页|基于无人机影像城市建筑物的分类制图与统计

基于无人机影像城市建筑物的分类制图与统计

扫码查看
建筑物是人类生活的主要场所,对其进行分类与统计可以为城市规划、资源管理、灾害风险评估和环境监测等要事提供所需的基础数据和信息,从而支持正确决策的制定和城市的可持续发展。为解决遥感影像中各建筑物之间间距小的问题,基于机器学习中随机森林算法并结合多尺度分割进行安庆市区无人机影像建筑物的分类制图与统计,结果表明该方法的分类精度为 0。873 4,Kappa系数为 0。762 7,并通过目视解译法进行对比分析,得出该方法在建筑物分类上具有可行性。
Classification Mapping and Statistics Based on UAV Image Urban Buildings
Buildings are the main places of human life,and classification and statistics of them can provide the necessary basic data and information for urban planning,resource management,disaster risk assessment,environmental monitoring,and other important matter,thereby supporting the formulation of correct decisions and the sustainable development of cities.To solve the problem of small spacing between buildings in remote sensing images,a classification mapping and statistics of UAV image buildings in Anqing urban area are carried out based on the random forest algorithm in machine learning and multi-scale segmentation.The results show that the classification accuracy of this method is 0.873 4,and the Kappa coefficient is 0.762 7.Through comparative analysis using visual interpretation,it is found that this method is feasible for building classification.

buildingUAV imageclassificationremote sensing application

陈梁、余学祥、蒲涛、汤连盟

展开 >

安徽理工大学 空间信息与测绘工程学院,安徽 淮南 232001

安徽理工大学 矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室,安徽 淮南 232001

安徽理工大学 矿区环境与灾害协同监测煤炭行业工程研究中心,安徽 淮南 232001

建筑物 无人机影像 分类 遥感应用

2021年度安徽省科技重大科技专项

202103a05020026

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(2)
  • 12