首页|基于Aprior算法的学生就业画像研究

基于Aprior算法的学生就业画像研究

扫码查看
基于校园行为数据的教育数据挖掘可以很好地解释学生的就业选择,为解决大学生就业问题提供参考。以某大学6 000余名本科生为研究对象,首先采集并分析学生的基本信息与在校行为数据,构建了学生标签体系;其次,通过Aprior关联规则挖掘不同毕业去向与学生标签之间的内在关系,生成升学类、国有企业类、出国出境类和三资企业类学生的就业画像。研究结果表明,不同就业去向的学生存在学业成绩、基本信息、行为规律性等方面的显著差异,为高校的就业指导和管理工作提供了参考。
Research on Student Employment Portrait Based on Aprior Algorithm
Education data mining based on campus behavior data can effectively explain students'employment choices and provide reference for solving the employment problem of college students.Taking more than 6 000 undergraduate students of a college as the research object,firstly,it collects and analyzes students'basic information and four-year behavioral data in college,and constructs students'label system.Secondly,it mines the intrinsic relationship between different graduation directions and students'labels through Aprior association rules to generate employment portraits of students in the categories of further education,state-owned enterprises,going abroad and three-funded enterprises.The results of the study show that there are obvious differences in academic performance,basic information,and behavioral regularity among students with different employment destinations,which provides reference for employment guidance and management in colleges.

employment portraitdata miningassociation rule

兰洁、董挺锴、朱梦琳、尹泉贺、原素慧

展开 >

华北水利水电大学,河南 郑州 450046

就业画像 数据挖掘 关联规则

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(3)
  • 10