首页|基于改进DeepLabv3+的道路分割算法

基于改进DeepLabv3+的道路分割算法

扫码查看
基于深度学习的遥感影像图像分割技术使用越来越广泛,针对现有算法存在参数量较大、细节部分提取结果差等问题,提出一种基于改进DeepLabv3+的道路图像分割方法。将轻量型网络MobileNetV2 引入改进后的池化金字塔模型用以提取中阶特征图,增强了不同感受野之间的相关性;并采用多尺度拼接融合方法生成高阶特征图,同时引入注意力机制来进一步加强对图像特征的提取效果。实验结果表明,所提方法相比于DeepLabv3+模型mIoU提高了5%,有效提升了遥感图像的分割精度。
Road Segmentation Algorithm Based on Improved DeepLabv3+
The use of Deep Learning-based remote sensing image segmentation technology is becoming increasingly widespread.In response to the problems of large parameter quantities and poor results in extracting details in existing algorithms,a road image segmentation method based on improved DeepLabv3+is proposed.Introducing the lightweight network MobileNetV2 into an improved pooling pyramid model to extract mid-order feature maps,which enhance the correlation between different receptive fields.A multi-scale concatenation fusion method is adopted to generate high-order feature maps,while introducing attention mechanisms to further enhance the extraction effect of image features.The experimental results show that the proposed method improves mIoU by 5%compared to the DeepLabv3+model,effectively enhancing the segmentation accuracy of remote sensing images.

semantic segmentationremote sensing imageroad extractionAttention MechanismDeepLabv3+

葛振强

展开 >

太原师范学院,山西 晋中 030619

语义分割 遥感影像 道路提取 注意力机制 DeepLabv3+

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(4)
  • 15