首页|基于SSA-LSTM模型的空气质量预测研究

基于SSA-LSTM模型的空气质量预测研究

扫码查看
为提高PM2。5 浓度的预测精度,提出了一种结合麻雀搜索算法(SSA)和长短期记忆神经网络(LSTM)的组合预测模型。以 2023 年 5 月至 8 月期间长沙市PM2。5 浓度数据为基础,构建了SSA-LSTM模型并与其他模型进行了对比实验。实验结果显示,SSA-LSTM模型的预测结果在拟合优度(R2)上相较于单一LSTM、PSO-LSTM和WOA-LSTM模型分别提升了 45。93%、31。55%、19。12%,同样在均方根误差(RMSE)和平均绝对误差(MAE)的结果上也表现更优,表明该模型在PM2。5 浓度预测方面具有高准确性和有效性,可为制定PM2。5 相关预防措施提供一定的参考价值。
Research on Air Quality Prediction Based on SSA-LSTM Model
To improve the accuracy of PM2.5 concentration prediction,a combined prediction model integrating Sparrow Search Algorithm(SSA)and Long Short-Term Memory(LSTM)neural networks is proposed.The SSA-LSTM model is developed based on PM2.5 concentration data from Changsha city,spanning from May to August in 2023,and is compared with other models.The results show that the SSA-LSTM model significantly outperformed the standalone LSTM,PSO-LSTM,and WOA-LSTM models in terms of fit quality(R2),registering improvements of 45.93%,31.55%,and 19.12%,respectively.Similarly,it also shows superior performance in terms of Root Mean Square Error(RMSE)and Mean Absolute Error(MAE).These findings demonstrate the model has high accuracy and effectiveness in PM2.5 concentration prediction,providing a certain reference value for making the PM2.5-related preventive measures.

SSALSTMair qualityPM2.5 concentration prediction

曹还君、李长云

展开 >

湖南工业大学 计算机学院,湖南 株洲 412007

麻雀搜索算法 长短期记忆神经网络 空气质量 PM2.5浓度预测

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(4)
  • 13