首页|基于PSO-LSTM的区域二手房价预测方法研究

基于PSO-LSTM的区域二手房价预测方法研究

扫码查看
探究房价趋势是一个高度复杂且充满非线性特征的研究难题。针对目前二手房价预测精度低的问题,文章提出了基于PSO-LSTM的区域二手房价预测方法。粒子群算法通过对LSTM模型进行优化,找到最优的参数组带入PSO-LSTM模型中,进而得到更符合实际情况的预测结果。文章通过湖南省株洲市天元区的二手房价时间序列数据集对PSO-LSTM模型进行训练,并与LSTM神经网络模型进行了对照分析。实验结果显示,PSO-LSTM模型对于区域二手房价的预测精度更优。
Research on Regional Second-hand Housing Price Prediction Method Based on PSO-LSTM
Exploring the trend of housing prices is a highly complex and full of nonlinear features research challenge.Aiming at the current problem of low accuracy of second-hand housing price prediction,this paper proposes a regional second-hand housing price prediction method based on PSO-LSTM.The Particle Swarm Optimization optimizes the LSTM model to find the optimal parameter group and incorporate it into the PSO-LSTM model,and then get the prediction results that are more in line with the actual situation.In this paper,the PSO-LSTM model is trained by the time series dataset of second-hand housing price in Tianyuan District,Zhuzhou City,Hunan Province,and the PSO-LSTM model is analyzed against the LSTM neural network model.The experimental results show that the PSO-LSTM model has better prediction accuracy for regional second-hand housing prices.

regional second-hand housing price predictiontime seriesPSO-LSTM modelLSTM

周昌堉、李长云

展开 >

湖南工业大学,湖南 株洲 412007

区域二手房价预测 时间序列 PSO-LSTM模型 LSTM

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(5)
  • 11