首页|基于深度神经网络的战场信息网信息群发现技术

基于深度神经网络的战场信息网信息群发现技术

扫码查看
战场信息网是人员、设备、武器平台等互联互通的复杂网络,战场信息网信息群的发现确定,可以进一步定位敌方的战场部署和指挥关系,为作战决策提供更详细的情报支持。在以往的研究中大多以发现拓扑结构为重点对战场信息网进行分析,文章探索利用节点的属性信息进行信息群发现,首先搭建一个虚拟的战场信息网,模拟战场上的情报群和指控群以及其他信息群通信,通过抓取不同信息群节点数据包提取数据特征来构建节点数据集;然后搭建DNN模型以数据特征作为输入,对节点的信息群属性进行判断;最后搭建一个虚拟战场信息网,使用训练后的DNN模型对节点所属信息群进行判断。
Information Group Discovery Technology of Battlefield Information Network Based on Deep Neural Networks
The battlefield information network is a complex network of personnel,equipment,weapon platforms and so on,and the discovery and determination of the battlefield information network information group can further locate the enemy's battlefield deployment and command relationship and provide more detailed intelligence support for operational decision-making.In the past research,most of the battlefield information network analysis focuses on the discovery of topology,this paper explores the use of node attribute information for information group discovery,first builds a virtual battlefield information network,simulates the battlefield intelligence group,accusation group and other information group communication,and construct node data set by capturing different information group node data packets to extract data features.Then,a DNN model is built to judge the information group attributes of nodes by using data characteristics as input.Finally,a virtual battlefield information network is built,and the trained DNN model is used to determine the information group to which the node belongs.

information groupdata characteristicsDeep Learning

刘海燕、朱铭铭

展开 >

中国人民解放军陆军装甲兵学院,北京 100072

信息群 数据特征 深度学习

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(6)
  • 12