首页|两种基于深度网络的股票价格预测方法研究

两种基于深度网络的股票价格预测方法研究

扫码查看
股票是一种重要的投资渠道,如何更准确地预测股票价格是一个热门的研究课题。由于股票数据的非线性、非平稳以及前后相关等复杂特点,传统的股票价格预测方法已经到达性能瓶颈。随着深度学习方法的兴起,LSTM和GRU等深度神经网络预测模型受到了极大的关注。基于厦门港务股票和上证指数的历史交易数据,利用了LSTM和GRU两种模型对收盘价进行预测研究,通过5个指标MAE、MSE、RMSE、MAPE和R2 给出了模型评价。
Research on Two Stock Price Forecasting Methods Based on Deep Network
Stock is an important investment channel,how to forecast stock price more accurately is a hot research topic.Due to the complex characteristics of stock data,such as non-linearity,non-stationarity and before and after correlation,traditional stock price forecasting methods have reached the performance bottleneck.With the rise of Deep Learning methods,deep neural network forecast models such as LSTM and GRU have received great attention.Based on the historical trading data of Xiamen Port Stock and Shanghai Stock Index,LSTM and GRU models are used to forecast the closing price.The model evaluation is given by 5 indexes of MAE,MSE,RMSE,MAPE and R2.

stock price predictionLSTM modelGRU model

孙震宇

展开 >

云南师范大学 数学学院,云南 昆明 650500

云南省现代分析数学及其应用重点实验室,云南 昆明 650500

股票价格预测 LSTM模型 GRU模型

国家自然科学基金

62266055

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(6)
  • 12